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Abstract

We present a study of the time decay of magnetic states in type-II superconductors. The mean escape time of flux
quanta from the pinning centers is calculated by considering the well-known washboard potential and a pinning potential
appropriate to the case of pinning center dimensions / much larger than the coherence length £. We find that, in both cases,
the attempt frequency in the Arrhenius formula depends on the current density J. Finally, by plotting the E(J) curves,
we show that the dissipation due to flux creep mechanisms goes to zero much faster in the second case, where [ >> £ is

assumed. (© 1997 Elsevier Science B.V.

PACS: 74.60.—w; 74.25.Ha

1. Introduction

During the last few years the study of vortex dy-
namics of the high-7; superconductors has been a
matter of extensive theoretical and experimental in-
vestigation. Indeed, several theoretical models have
been proposed {1-4], where a non-linear increase of
the creep barrier with decreasing current density is
present. Moreover, from magnetic relaxation measure-
ments, Maley et al. [5] report a sharp increase of the
effective activation energy U as the current density J
decreases. Analogous results have been found by Zel-
dov et al. [6] from transport measurements. These
experimental results can be analyzed within the col-
lective pinning theory [7]. In this particular model,
though, the effective barrier height grows indefinitely
as J goes to zero. Other models [8] predict the same
diverging behavior for vanishingly small current den-

sities. In order to analyze the flux creep problem in
detail, in the present work we study the mean escape
time from the pinning centers of a single flux quan-
tum, by starting from the general expression of the
Arrhenius formula as derived from the classical the-
ory of stochastic processes. In Section 2 we therefore
start by studying the problem of the mean escape time
from a washboard potential well, while in Section 3
we introduce a pinning potential UﬁH ) appropriate to
the case of pinning center dimensions / much greater
than the coherence length £. The choice of the poten-
tial U; " is justified by means of a phenomenological
approach. We find that, while the attempt frequency
v(J) goes to a finite value vy as J goes to zero in the
case of the washboard potential, for [ > £, v(J) goes
to zero for vanishingly small current density values.
In Section 4 the resulting curves of the electric field
E due to creep mechanisms are plotted in terms of the
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current density J for both types of potential. Conclu-
sions are drawn in the last section.

2. The washboard potential

The problem of the current dependence of the mean
escape time from a potential well of a single flux quan-
tum can be tackled by adopting the same assumptions
as in the usual derivation of the Arrhenius formula. In-
deed, following Gardiner [9], the attempt frequency
can analytically be expressed as the geometric mean
of the curvatures of the potential well at the local min-
imum xp;, and at the local maximum x4 of the po-
tential as follows,

v(J) = /U Cimia) U Coman) /2778, (1

where B is the damping constant. Therefore, by start-
ing from the following shape of the usual washboard
potential, shown in Fig. 1,

Uy(x/A)/Us=1—cos(x/A) — (JIJ)x/A,  (2)

where A is some characteristic length, we find that
the Arrhenius formula may be explicitly expressed in
terms of the current density J in the following simple
way,

1/7=w(J) exp(—AU, /ksT), (3)

where kg is the Boltzmann constant, AU, is the po-
tential barrier height, and v = v(J) is the attempt fre-

Us(x/A) 1 Uo
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Fig. 1. The shape of the washboard potential U, (x/A) /Uy for the
current density ratio value J/Jo =0.1.

quency. By expressing the curvature of the potential
energy at adjacent extrema as a function of J, we find

v(y) = Up\/1 —¥2/2w 2B, (4)

where y = J/Jy. In Fig. 2 we report, for 8 =1, the
current density dependence of the attempt frequency
v having a finite value for J — 0. In the inset we
show the current dependence of the resulting potential
barrier height AU, where

AUy =Uj(xmax) — Us(Xmin)
=Up [2\/1 — 2 + 2yarcsin(y) —777] , (5)

for the value of the ratio Uy/kgT = 10. In this fig-
ure the horizontal line AU; = kgT is traced. This
line marks the lower limit of the range of validity of
Eq. (3), since the Arrhenius formula is derived under
the assumption of kg7 < AU,. Therefore, care must
be taken in applying these results for J close to J.

3. A different pinning potential

In extreme type-II superconductors the coherence
length may be small when compared to the character-
istic pinning site dimension [ as, for example, in the
case of high-T. superconductors. Therefore, one needs
to modify the traditional way of looking at the de-
pinning mechanisms, which appear when a current J
is applied in the direction orthogonal to the magnetic
field H. Let us here consider the pinning barrier as-
sociated with a single vortex, which can be depinning
from a single pinning site. The interaction potential
between a vortex and a pinning site can be taken to be
proportional to the Ginzberg-Landau superconducting
order parameter [10] /| ~ || tanh(ax/€), where
£ is the coherence length, and a is a constant of the
order of unity. Therefore, the pinning potential U}H )
can be taken in the form

U™ (x) /Uo = tanh[ (x — 1) /€] — tanh[ (x + [) /£]
— €o(J/Jo)x/§, (6)

where 2/ is the finite size of the pinning center, and
€0 = DoJoL/Uy, Do being the elementary flux quan-
tum, and L the vortex line length. The linear term in
Eq. (6) is introduced to take account of the Mag-
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Fig. 2. The characteristic frequency »(J) /vy curve as a function of the current density J/Jo. In the inset AU, /Uy versus J/Jy is shown

for a value of the ratio Up/kpT = 10.

nus force on the flux lines due to the current den-
sity J. In Fig. 3 we show the potential energy shape
for J/Jy = 0.1 using two different values of the ratio
1/€ = 4,10. We numerically evaluate the extrema of
the potential curve U;H )(x) and the potential barrier
AUﬁH) = UﬁH)(xmax) — Uﬁﬂ)(xmin). In this way, the
generalized attempt frequency »(J) can be obtained
by Eq. (1).

In Fig. 4 and in the inset we report the v versus
J dependence for the values of the ratio //£€ = 4,10
and the current dependence of AUS™) for the same

(x/E)MU,

(H)
J

U
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Fig. 3. The shapes of the pinning energy U}H)(x)/Ug for
1/¢=4,10 and J/Jo = 0.1.

values of the ratio /£, respectively. We find that, for
pinning centers larger than the coherence length £, the
characteristic frequency v goes to zero for vanishingly
small current density values.

4. Comparison between the two types of potentials

The analysis of non-linear characteristics, E-J
curves, has been shown to be a powerful tool for
the study of the dissipation properties of high-T, su-
perconductors. For this reason, in this section, the
analysis of the E-J curves will be reported. Having
analytically and numerically derived the generalized
attempt frequency »(J) in the Arrhenius formula, for
the cases of the washboard potential U/; and of the
pinning potential U}H), respectively, we will now dis-
cuss the transport properties due to flux creep mecha-
nisms in these materials. The electric field Ereep can
be written as follows,

Ecreep =EO(V(J)/VO) eXP(—AW/kBT), (N

where Eg = 2apHvy, ap being the distance between
two pinning centers, and AW is the energy barrier
height.

Let us first calculate Ecep for the washboard poten-
tial case. Using Eq. (4) for #(J) and Eq. (5) for AW,
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Fig. 4. The characteristic frequency ¥(J) /v curve as a function of the current density J/ Jo for //£ =4, 10. In the inset AU}H ) Uy versus

J/ Jy is shown for the value of the ratio Up/ksT = 10.

we obtain an analytic expression for the electric field
Ecreep- In Fig. 5 we show the Ecreep versus J depen-
dence, and compare it with the corresponding quan-
tity calculated without taking into account the current
density dependence of the frequency ». Here the ratio
Uo/kgT has been fixed to 10. In Fig. 5 we notice only
a slight difference between the two curves.

The Eeep versus J curves can be calculated, by
the same type of procedure as adopted in the case of
the washboard potential, for superconductors having
large pinning center sizes. This time, however, only a
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Fig. 5. The electric field Ecreep/ Eo curves due to creep mechanisms
as a function of the current density J/ Jy are shown for a value of

the ratio Ug/ksT = 10 with v = »(J) and » = cost.

numerical evaluation of the curves can be presented,
as explained in Section 3. In Fig. 6 the Eeep versus J
curves are shown for » = cost and for v = v (J), for
two values of the ratio //£. This figure shows that for
/¢ > 1 and J — 0, much smaller values of Ereep are
obtained for v = »(J) than for v = cos ¢.

The introduction of two different potentials allows
us to compare the resulting curves of the electric
field Ecreep/ Ep in terms of the current density J/Jg in
the two cases discussed in the two previous sections.
These have been plotted in Fig. 7, where v = v(/J),
Uo/ksT = 10 and, in the case of the potential choice
U}H), 1/€ = 4,10. Finally, we obtain, for //¢ > 1 and
vanishingly small current densities, that the dissipa-
tion phenomena due to flux mechanisms goes to zero

much faster by considering the potential energy UﬁH ),

5. Conclusions

We have analyzed the problem of the time decay
of the magnetic properties of type-II superconductors
for a modified Arrhenius formula in which the explicit
current density J dependence of the attempt frequency
v is taken into account. In particular, the v versus J de-
pendence has been analytically calculated in the case
of the washboard potential and has been numerically
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Fig. 6. The electric field Ecnep/Eqg curves due to creep mechanisms as a function of the current density J/Jy are shown for a value of

the ratio Uy/kgT = 10 and [/¢ = 4,10 with » = »(J) and v = cos:.
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Fig. 7. The electric field Ecrecp/ Ep curves due to creep mechanisms
as a function of the current density J/J; are shown for the value
of the ratio Uy/kpT = 10 with »(J). The solid line refers to the
washboard potential, the two dashed lines to the potential Uﬁm
for {/£=4,10.

evaluated in the case of a potential Uﬁﬂ) appropriate
for extreme type-II superconductors in which the av-
erage pinning center size [ is large with respect to the
coherence length £.

The E-J characteristics have been derived for both
types of potentials, and it has been shown that the
dissipation due to the creep mechanisms for the wash-
board potential does not very strongly depend on the J
dependence of the prefactor of the Arrhenius formula

v. In the case of I/¢ > 1, instead, the » versus J de-
pendence significantly affects the dissipation phenom-
ena due to flux creep mechanisms. Finally, we notice
that, for decreasing values of J, Ecrep calculated for

the potential U}H) goes to zero much faster than in the
case of the washboard potential.
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