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Abstract

The low-field magnetic response of a physical system consisting of eight superconducting spherical grains in a cubic
arrangement is studied by means of a three-dimensional Josephson junction network. The lower threshold field for this

™
system is numerically studied as a function of the inclination of the externally applied magnetic field H with respect to the
z-axis. q 1998 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

w xGranularity in high-T superconductors has led to novel types of physical phenomena 1–3 , some of whichc

have not found a complete explanation yet. Indeed, the interplay between intergranular and intragranular
w xproperties of these systems makes it difficult to interpret their low-field magnetic response 4 .

As far as the intergranular properties of granular superconductors are concerned, weak coupling between
w xsuperconducting grains gives rise to the so called ‘intergranular critical state’ 5–8 . In order to fully understand

the flux penetration mechanisms underlying this type of response, we begin by considering a very simple system
consisting of eight superconducting spherical grains in a cubic arrangement. We carry out our investigation in
the low-field and low-temperature limit in such a way that intragranular flux penetration can be neglected. By
showing that this system can be studied by means of a Josephson junction network consisting of twelve
junctions located at the sides of a cube, we give a one to one correspondence between observed physical
quantities and calculated ones by introducing an effective inductance matrix which takes into account the
magnetic energy of the circulating currents. Basic magnetic response of the cubic junction network has been

w xtreated elsewhere 9 . In the present paper we numerically evaluate the lower threshold field intensity for flux
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penetration in a homogeneous cubic network for arbitrary field orientations and for different values of the
˜coupling parameter bsL I rF , where L is the effective inductance parameter, F is the elementary fluxe f f J 0 e f f 0

quantum and I is the maximum Josephson current of the junctions. It is found that, as in the case of oneJ
˜ ˜junction in a single superconducting ring, there exists a critical value b of the coupling parameter b , belowc

˜which flux penetration is reversible. Moreover, for a fixed b value, the first threshold field intensity is seen to
decrease for increasing values of the inclination of the field direction with respect to the z-axis in the interval
w x0,pr4 .

2. Current and flux distributions

In the present section we shall give a schematic representation of current and flux distributions in the
physical system of Fig. 1a in the case the superconducting grains are taken to be perfectly diamagnetic and
identical. In the simpler case when the external field is applied along a symmetry axis of the cubic structures,
the z-axis for example, we might picture the current distribution as in Fig. 1b. In this case, indeed, only
azimuthal currents flow in the model system, and we might distinguish them as external and internal shielding
currents, which we shall denote as I and i, respectively. The internal shielding currents circulating in the lower
and upper part of the system will be denoted as i and i . Similarly, the external shielding currents will bel ow u p

denoted as I and I , if they circulate in the lower or upper part of the system. In the same way, we canl ow u p

define the fluxes linked to the upper inner and outer loops as F and Q and the corresponding fluxes linkedu p u p

to the lower inner and outer loops as F and Q . By taking into account both self-inductance and mutuall ow low

inductance effects, we can write the following:

F s li qm) I qmi qmXI qm HS ,u p u p u p low low 0 i n
X

)Q sm i qLI qm i qMI qm HS ,u p u p u p low low 0 out
1Ž .X

)F smi qm I q li qm I qm HS ,l ow u p u p low low 0 i n
X

)Q sm i qMI qm i qLI qm HS .l ow u p u p low low 0 out

Ž .In Eq. 1 the inductance coefficient matrix is taken in such a way that the self-inductances relative to a single
loop are denoted by l for inner loops of area S and by L for outer loops of area S ; the mutual inductances,in out

instead, are taken to be M for outer–outer and m for inner–inner loop current interaction. The coefficients m)

X Ž .and m , on the other hand, denote inner–outer or outer–inner loop current interactions for loops lying on the
same face and for loops lying in different parallel faces, respectively. Since the grains have been assumed to be
in the perfect Meissner state, we can set:

Q sF sF ,u p u p

Q sF sF
X . 2Ž .l ow low

Furthermore, by symmetry reasons, we can write:

FsF
X ,

I s I s I ,u p low 3Ž .
i s i s i .u p low

Ž .In this way, Eq. 1 reduce to the following:

Fs m) qmX iq LqM Iqm HS ,Ž . Ž . 0 out

Fs lqm iq m) qmX Iqm HS . 4Ž . Ž . Ž .0 in

Ž .We can now solve Eq. 4 in terms of the currents i and I and define the current circulating in the upper and
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lower junctions as I (B) s iq I. We shall see in what follows that this current is just the effective current flowing
Ž . Ž .in the Josephson junctions JJ ’s connecting the grains. Therefore, from Eq. 4 we can write the following:

FsL I ŽB .qm HS , 5Ž .e f f 0 e f f

where
2X

)LqM lqm y m qmŽ . Ž . Ž .
L s 6Ž .Xe f f

)LqM q lqm y2 m qmŽ . Ž . Ž .
and

X X
) )LqM y m qm S q lqm y m qm SŽ . Ž . Ž . Ž .in out

S s 7Ž .Xe f f
)LqM q lqm y2 m qmŽ . Ž . Ž .

are the effective self-inductance and mutual inductance coefficients of a single representative loop of the
schematic current distributions in Fig. 1b. In this way, the 3D physical system has been reduced to a model
system consisting of a single superconducting loop interrupted by four JJ’s.

In the case the external field is along an arbitrary direction in space, we could express the fluxes in terms of
the circulating current by introducing additional elements to the inductance matrix, whose complete structure
could be summarized as follows:

X™ ™Žd .X™™Ž mn . r , r
X X™™ ™™ w xP r ,r s d Lq 1yd M d q y1 M 1yd , 8Ž .Ž . Ž .Žhj . r ,r r ,r Ž mn . ,Žhj . 0 Ž mn . ,Žhj .

X™ ™Žd .X™™Ž mn . r , r
X X™™ ™™ w xT r ,r s d lq 1yd m d q y1 m 1yd , 9Ž .Ž . Ž .Žhj . r ,r r ,r Ž mn . ,Žhj . 0 Ž mn . ,Žhj .

X™ ™Žd .X X X™™Ž mn . ) r , r
X X™™ ™™ w xR r ,r s d m q 1yd m d q y1 m 1yd , 10Ž .Ž . Ž .Žhj . r ,r r ,r Ž mn . ,Žhj . 0 Ž mn . ,Žhj .

where the elements of the matrix P are relative to outer-outer loop current interactions, those of the matrix T
pertain to inner-inner loop current interactions, and those of the matrix R pertain to inner-outer loop current

™ ™Xinteractions. In addition, the r and r have been introduced to give account of the position of the unit cell for
Ž . Ž . Ž .the system, consisting of three faces in the three planar orientations in space, namely, yz , xz , and xy . In

™ ˆ ˆŽ .the case of a single cube the only possible positions of the unit cell are at the origin rs0 and at a j , j being
Ž Ž ..the unit vector in the direction of the j-axis js x, y, z and a being the length of the cube side. In Eqs.

Ž . Ž .8 – 10 , the double greek indices are taken to represent the three planar orientations in space. We have tried to
keep the notation similar to that used above with the coefficients M , m , and mX being the mutual inductanceso o o

Ž .between orthogonal faces for outer–outer, inner–inner and inner–outer or outer–inner loop current interac-
™Ž . Ž .tions, respectively. We can define the inner and outer loop currents flowing in the hj plane as i r andŽhj .

™ ™ ™Ž . Ž . Ž .I r , so that the corresponding fluxes F r and F r could be written in the following compact form:Žhj . Žhj . Žhj .

™X X X X™ ™™ ™ ™™ ™ ™ ™Ž mn . Ž mn .F r s R r ,r I r q T r ,r i r qm HPs r , 11Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ý Ýhj Žhj . Ž mn . Žhj . Ž mn . 0 Žhj .
X X™ ™mn mnr r

™ ™X X X X™ ™™ ™ ™™ ™ ™Ž mn . Ž mn .Q r s P r ,r I r q R r ,r i r qm HPS r , 12Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ý Ýhj Žhj . Ž mn . Žhj . Ž mn . 0 Žhj .
X X™ ™mn mnr r

™ ™where S and s are the area vectors associated to the outer and inner loops, and orthogonal to the h–jŽhj . Žhj .
plane, respectively. Again, by having assumed the grains to be in the perfect Meissner state, we can set:

™ ™
F r sQ r 13Ž . Ž . Ž .Žhj . Žhj .

as it was done in the simpler case treated before. We have thus obtained a linear system of equations, which

Ž .Fig. 1. a Current distribution in an eight-grains system in a cubic arrangement. The applied field is orthogonal to the base face of the cubic
Ž . Ž .structure; b Schematic representation of the current distribution shown in a .
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™ ™ ™ŽB . Ž . Ž . Ž .could be solved for the currents in such a way that an effective current I r s I r q i r could stillŽ mn . Ž mn . Ž mn .
be defined. In this way, a one to one correspondence between the effective currents I (B) and the fluxes hasŽ mn .
been obtained through the inductance matrices. If the magnetic response of a real physical system is to be

Ž .described, one first needs to solve Eqs. 11,12 for the I ’s and the i ’s in terms of the applied fluxesŽ mn . Ž mn .™ ™ ™ ™ ™ ™ ™ŽB . Ž . Ž . Ž .m HPS and m HPs and of the F ’s. Secondly, one defines I r s I r q i r so that the0 Ž mn . 0 Ž mn . Ž mn . Ž mn . Ž mn . Ž mn .
effective currents are expressed in terms of the fluxes by means of an effective mutual inductance matrix, which

™X™™ ™Ž mn . e f f. Ž .we shall call A r,r , and by an effective area vector S r , as it was done in the case of an axialŽhj . Žhj .
externally applied field. In this way, one may finally write:

™ ™ X X™ ™ ™™ ™e f f Ž mn . ŽB .F r ym HPS r s A r ,r I r . 14Ž . Ž . Ž . Ž .Ž .Ý ÝŽhj . 0 Žhj . Žhj . Ž mn .
X™ mnr

However, because of the complexity of the space distribution of currents in the real system of Fig. 1a, we shall
here only consider one characteristic low-field response, whose qualitative behavior does not depend on the
particular choice of the inductance matrices; namely, the lower threshold field. Let us then consider the case in
which the inductance matrices are taken to be equal:

™™X ™™X ™™XŽ mn . Ž mn . Ž mn .P r ,r sT r ,r sR r ,r 15Ž .Ž . Ž . Ž .Žhj . Žhj . Žhj .
™ ™ ™ ™Ž . Ž . Ž . Ž .and for S r ss r . Eqs. 11 and 12 will therefore reduce to the following:Žhj . Žhj .

™ ™ X X™ ™ ™™ ™Ž mn . ŽB .F r ym HPS r s P r ,r I r . 16Ž . Ž . Ž . Ž .Ž .Ý ÝŽhj . 0 Žhj . Žhj . Ž mn .
X™ mnr

In this case, obviously, the grains reduce to points, while the effective areas are taken to be finite, so that the
Ž . Ž .link to the real system, whose electrodynamic equations are given by Eqs. 11 and 12 , is lost. However, Eq.

Ž .16 more easily describes the connection between the effective current flowing into the junctions and the flux
linked to the superconducting loops in the system.

3. The Josephson junction network

In Section 2 we have written down the equations describing the classical electrodynamic response of the
system in Fig. 1a without any mention of its superconducting quantum behavior. However, we have derived an
expression for the fluxes F in terms of the currents I (B) , which we defined to be the effective currentsŽ mn . Ž mn .
flowing in the junctions and which can be readily used when the Josephson equations are invoked. Indeed, by
associating a Josephson junction to each contact point between grains, one obtains a cubic network consisting of

w xtwelve Josephson junctions, one at each side of the cube. With the aid of the RSJ model 10 , now, by
introducing the non-linear Josephson operator defined as:

F d0
O P s P q I sin P , 17Ž . Ž . Ž . Ž .J J2p R d t

w xwhere R is the junction’s resistive parameter, for each junction in the network we can write 9 :
X™ ™ ™Ž . Ž .B BO w r s e I r y I rya n , 18Ž . Ž . Ž .Ž .ˆÝ ž /J j jmn jn jnŽ . Ž .

m ,n
™Ž .where w r is the gauge-invariant superconducting phase difference pertaining to a junction lying in thej

™ XŽ .j-direction and located in a unit cell at point r. In Eq. 18 e is the Levi Civita’s symbol and a is thehmn

Ž .effective length of the cube side. Notice also that the summation is carried out over all possible mn ’s, but that
Ž . Ž . Ž .only yz , xz and xy terms contribute to it.

In addition to the Josephson equations describing phase dynamics, we may invoke the Bohm–Aharonov
relation, which, when written for a closed superconducting path containing Josephson junctions, relates the

w xphase differences of the junctions in the closed path and the flux linked to it, so that 9 :
™ ™ ™ ™ ™ ™ˆ2pF r rF s2p n r qw rqah yw r yw rqaj qw r , 19Ž . Ž . Ž . Ž . Ž .ˆŽ . Ž .Žhj . 0 Žhj . j j h h
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™Ž . Ž . Ž . Ž . Ž . Ž . Ž .where n r are integers and, again, hj takes on the following form: yz , xz , xy . Eqs. 16 – 19Žhj .
completely define the magnetic response of the system. In this way we may start analyzing one of the most
peculiar characteristics of granular superconductors; namely, the lower threshold field. Indeed, when a granular
superconductor and, in particular, the cubic system under study is cooled below the critical temperature of the

Ž .grains in the absence of externally applied fields ZFC , no flux is present in the superconducting system itself.
In this way, given the absence of currents, we may set all the superconducting phase differences to zero, so that

™Ž . Ž .all the integer values n r may be taken to be exactly null in Eq. 19 . When a magnetic field isŽhj .
subsequently applied, external shielding currents will tend to exclude flux lines from the inner part of the
sample. However, Josephson junctions located in the external shielding current path may suffer a 2p phase slip

Ž .if the current value exceeds I . For each 2p phase slip in one junction, Eq. 19 predicts the penetration of oneJ

flux quantum into the inner intergranular region of the system, i.e., the normal region enclosed in the
superconducting granular system. This penetration mechanism may be either reversible or irreversible, depend-

˜ing on the values of the characteristic parameter bsL I rF , L being the effective inductance of the loope f f J 0 e f f
˜ ˜the flux links to. Indeed, as in the more usual d.c. SQUID case, if b-b , flux penetration is reversible,c

˜ ˜whereas, if bGb , the system irreversibly traps flux lines in its intergranular region.c

In the case the external field is applied in the direction of the symmetry axis of the cubic system, it can be
˜ ˜ ˜w xshown 9 that b s2rp . The irreversible magnetic behavior for bGb may be detected, for example, in thec c

F vs. F sm HSe f f curves, Se f f being the effective area of one cube face. Indeed, in Fig. 2 we show theŽ x y. e x 0 0 0

normalized flux C sF rF as a function of the normalized applied flux C sF rF for a system inŽ x y. Ž x y. 0 e x e x 0
Ž .which the mutual inductance matrices have been taken to satisfy Eq. 15 . In this case L s lqm, and we tooke f f

w xbs lI rF s1 and mrls0.03, as calculated elsewhere 9 . Moreover, I has been taken not to depend on theJ 0 J
˜ ˜ Ž1.externally applied field. Since bs1.03b)b , the system shows an irreversible flux transition at C sC ,c e x e x

recognizable by a first discontinuity in the C vs. C curve by following this curve from C s0 and forŽ x y. e x e x

increasing values of the externally applied flux. The lower threshold flux C Ž1. can be obtained analytically ine x
w xthis case 9 , so that:

2 22 2 2
Ž1. y1˜C sb 1y q pysin 1y . 20Ž .) )e x ž / ž /˜ ˜p � 0pb pb

A hysteretic behavior is also detectable in Fig. 2. In Fig. 3, we finally show the current iŽB . s I ŽB . rI as aŽ x y. Ž x y. J

Ž .Fig. 2. Flux linked to the xy faces as a function of the normalized applied flux C for b s1.0 and for u s0. For a quick conversion toe x
e f f 2 w xnon-normalized quantities, by taking S ,100 mm , we have m H ,0.02 C mT .0 0 e x
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Ž .Fig. 3. Mesh current circulating in the xy faces as a function of the normalized applied flux C for b s1.0 and u s0.e x

function of C for bs1. The 2p phase slip of the junctions lying in the faces orthogonal to the field directione x

generates here a current inversion from negative to positive values at C sC Ž1..e x e x

4. Lower threshold field

When the external field is applied along an arbitrary direction in space, shielding currents circulate in all
cubic faces, so that an exact analytic solution for the lower threshold field C Ž1. is not feasible anymore. In thise x

general case one needs to numerically integrate the dynamical equations for the cubic system, starting from ZFC
conditions and letting the externally applied flux to increase a small enough variation DC . In this way onee x

records the lower threshold field value by detecting the first discontinuity of amplitude greater than one flux
quantum in the C vs. C curves, or, equivalently, the first current discontinuity in the i ŽB . vs. CŽ mn . e x Ž mn . e x™
graphs. In what follows we shall take an applied magnetic field H lying in the y–z plane and making an angle
u with the z-axis. A resulting C Ž1. vs. u graph is shown in Fig. 4 for various values of the parameter b. In thise x

curves mrls0.03 and m rlsy0.24. Let us take the maximum Josephson current of the junctions not to0

depend on the externally applied flux. Therefore, we can consider the C Ž1. vs. u curves for a fixed b value ase x

representing the u-dependence of the lower threshold field at constant temperature. The lowering of these curves
for decreasing b values may thus be interpreted as an effect of the decrease of the superconducting coupling

Ž1. w xenergy due to increasing temperatures. The decrease of C with increasing u-values in the interval 0,pr4e x

Fig. 4. Angular dependence of the lower threshold field C Ž1. for various values of the parameter b and for mr ls0.03 ande x

m r lsy0.24.0
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Fig. 5. Lower threshold field C Ž1. as a function of the parameter b for various values of the angle u and for mr ls0.03 ande x

m r lsy0.24.0

may be explained by noticing that additional currents circulate in the cube faces, so that their combined action
tend to add in some junctions and to subtract in other junctions. Of course, phase slips always take place in
those junctions where the currents circulating in adjacent loops flow in the same direction. One may also notice
that, for bs0.5, the lower threshold field does not exist for us0, while it still exists for u /0. This fact is

˜indicative of an increase of the effective coupling parameter b for u/0, when compared to the case of us0.
In Fig. 5 we report the b-dependence of the lower threshold field for different values of the angle u . In this

figure we may notice a quasi-linear asymptotic dependence of C Ž1. from b , similar to that obtained from thee x
Ž Ž .. w x w xanalytic expression for us0 Eq. 20 shown elsewhere 9 . For increasing u-values in the interval 0,pr4 , we

notice a shift of the curves toward lower values of C Ž1. and a corresponding decrease of the slope of thee x

interpolating straight line. We remind that b is a coupling parameter whose temperature dependence is linked to
Ž .that of I through the constant factor L rF . Therefore, being I T a monotonically decreasing function of TJ e f f 0 J

w x11,12 , we may extract an additional qualitative type of information on these curves; namely, that the lower
threshold field C Ž1. is a monotonically decreasing function of T. The behaviour is in a qualitative agreemente x

w x Ž . w xwith experiments done in YBa Cu O 13 and Bi,Pb Sr Ca Cu O 14 granular superconductors.2 3 x 2 2 2 3 y

Quantitative comparison of the calculations with experiments is difficult, mainly for two reasons. A real
sample consists of thousands of grains with more or less different grain and intergrain properties. Thus the
situation does not correspond well with the model specimen with a few grains of homogeneous properties.
Secondly, in the model we suppose that themagnetic flux has not penetrated into the superconducting grains, i.e.
the grains are in the Meissner state. This allows us to model pure intergranular properties of the granular
material. In many granular superconductors the condition is justified at low magnetic fields and low enough
temperatures. However, in high quality material with well oriented grains and strong intergranular links, such as
in high-T tape superconductors, this may not always be valid and, therefore, experiments done with highc

quality material may not present solely intergranular properties but an admixture of intergranular and
intragranular properties of the material.

5. Conclusion

By examining a homogeneous granular system consisting of eight grains in a cubic arrangement, we have
investigated the link existing between this class of superconductors and the Josephson junction network models
adopted in the description of the magnetic behavior of granular superconductors. A one to one correspondence
between the observed physical quantities in the eight grain system and the corresponding quantities calculated
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by means of a cubic Josephson junction network was found to be given by the mutual inductance matrices
introduced in defining the classical electrodynamic response of the system.

Furthermore, by considering the simple case in which the obtained inductance matrices are all equal, we have
shown the resulting flux and current distribution as a function of the externally applied flux. A lower threshold
field for the system has been defined as the external magnetic field value at which the first irreversible flux
penetration takes place after ZFC. The lower threshold field behavior has been finally analyzed as a function of
the inclination of the applied magnetic field, taken to lie on the y–z symmetry plane, with respect to the z-axis.
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