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Abstract

We study the magnetic field dependence of the maximum Josephson current in a homogeneous parallel array of Josephson
junctions in the limit of very small values of the characteristic inductance parameter 8;. We show that the usual interference
patterns obtained for 8. = 0 and for vanishingly small junction to loop area ratios are enriched by new features when 8.
is finite, but still small enough to allow a perturbative analysis of the problem, and when the single junction interference

pattern is taken into account. €) 1998 Elsevier Science B.V.
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1. Introduction

The magnetic field dependence of the maximum
Josephson current /; of a parallel array of N 41 junc-
tions is of interest for its practical applications in the
field of electronic devices based on flux-flow [1].
Moreover, it can also be regarded for its purely scien-
tific interest, given the analogy existing between this
subject and the problem of diffraction gratings in op-
tics.

The simplest parallel connection of Josephson junc-
tions is the d.c. SQUID, which has been extensively
studied in the past [2,3]. Even in this simple case,
though, an exact solution of the problem can only be
given in the case of negligibly small inductance of the
superconducting loop containing the two junctions. In
the present work, therefore, we start from the circuital
model shown in Fig. 1 containing N + 1 junctions

and N loops. We show that, for negligible values of
the generalized SQUID parameter 8., this general ap-
proach gives the usual results, already known from
the literature [4,5]. In this case, indeed, the I. versus
H curves, where H is the externally applied magnetic
field, show an interference pattern with unitary peri-
odicity in the quantity uoHSo, So being the loop area.
In addition, by taking into account the single junc-
tion maximum Josephson current field dependence,
these interference patterns are shown to be modulated
by a Fraunhofer-like pattern with pseudo-periodicity
moHS;, S; being the effective junction area. Finally,
by assuming small enough values of 8;, a perturba-
tive analytic approach is developed to study this lim-
iting case and predictions are made in the cases N = 1
and 2.
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Fig. 1. Parallel Josephson junction array. The current bias is applied
at the top vertices of the array. The Josephson junctions are
contained in the rectangular boxes together with the inductance
parameter of the vertical branches, as shown in the inset.

2. The model and the equations

Consider the homogeneous parallel Josephson junc-
tion array shown in Fig. 1. In this system, each rect-
angular box in the vertical branches corresponds to a
Josephson junction (JJ) and an inductor of inductance
lp, as shown in the inset of Fig. 1. The effective in-
ductance of the horizontal branches is taken to be L.
Furthermore, the number of junctions is N + 1 and the
number of loops N. Each loop of the network has a
surface area equal to Sp. An external field, H, is ap-
plied perpendicular to the loop surface and the flux
linked to each loopis @,,,m = 1,2, ..., N. A bias cur-
rent, Ip, is applied at the top vertices of the array and
driven at the bottom ones, as shown in Fig. 1. Finally,
a current {; goes through the kth junction, to which a
gauge invariant superconducting phase difference ¢y,
with & ranging from O to N, is associated.

By imposing fluxoid quantization to each loop en-
closed between the Oth and the kth vertical branch,
one can write the N relations between the normalized
flux variables ¥, = @, /®,, where Py is the elemen-
tary flux quantum, and the superconducting phases ¢;
as follows,

k

Qe =0 =27y Wy + 2mny, (1)
m=1
where ny is an integerand k=1,..., N.

The flux variables can be linked to the branch cur-
rents and to the applied field H according to

k—1

Y= BL(a(ik—l — i) —ip+ 2Zim> + Wex, (2)

m=0

where Yex = uoHS/®Py, a = lp/Ly and B; =
Loljo/®o with Iy being the zero-field maximum
Josephson current of the junctions. All the currents
are normalized with respect to I, so that iy = I; /0
and i = Ig/l;0. Let us introduce the non-linear
Josephson operator O,, defined as

Py d
Ojk(') = 27R a
where the resistive parameter, R, is taken to be the
same for all JJs and f; is a function accounting for the
Fraunhofer-like dependence of the maximum Joseph-
son current from the local field. It can be shown that,
for linear field distributions inside the junctions, f
may be written as follows,

() + Lo fesin(), (3)

_ sin(*n"[’,k)
fk = 77‘1;'],‘ s (4)
where
S ¥+ ¥iq
U, ==
Jx SO ) (5)

with §; being the effective junction area. Neglecting
the capacitance of the junctions, the equations of the
motion for the N + 1 phase variables can be written as

0, (¢x) = I1. (6)

In what follows we shall maximize the bias current
Ip with respect to the phase variables ¢;. Notice that,
from Kirchoff’s law, the normalized bias current can
be written, under stationary conditions, as follows,

N N
is= ik=Y  fesin(er). (7)
k=0 k=0

Eqgs. (1)~(7) thus completely define the problem.

3. A perturbative approach

In the present section we shall derive the depen-
dence of the normalized maximum Josephson current
ic from the external magnetic flux ¥, in the limit of
small 8; values.

Let us then start by noticing that all the phase vari-
ables can be expressed in terms of the single phase ¢q
in a recursive way by means of Eqgs. (1)-(6). This
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procedure is more evident in the case of null induc-
tance, for which ¥, = ¥. Indeed, in this case, Eq.
(1) can be rewritten as follows,

©r = @0 — 2TkWex + 271y (8)

In this way, Eq. (7), can be written in the following
form,

N N
ip= k= fisin(go—2mkV¥er). 9
k=0

k=0

For perfectly identical junctions and for a slowly vary-
ing field distribution in the array, we can set fx = fo
fork=0,1,2,...,N, so that, the sum in Eq. (9) can
be carried out exactly, giving

sin{ (N + 1) 7]

ig = fosi — N7, 1
ip = fosin(po — N7¥ex) Sn(7 o) (10)
It is now easy to maximize ig, so that

in[(N+ 1)@,
i = fosm[( + D%l | (n

sin{77¥ey )

A typical interference pattern is represented, for
N =9, in Fig. 2, where we notice that the envelope
of the maxima is given by the presence of the single
junction Fraunhofer-like pattern | fo|.

In the case of finite inductances, we could still ap-
ply a recursive approach to define the phase variables
in terms of the single phase ¢y. In this case, however,
we would get into a nested type of operation, and an
exact solution of the problem would not be possible
anymore. Nevertheless, we can show that, if the induc-
tance parameter B is small enough, we can still try
to get to a semi-analytic result by the following proce-
dure. First we express the phase variables with index
k greater than O in terms of the variable ¢o through
Eq. (1). By making use of Eq. (2) one writes

or = po — 2mkWex

k—1
+ 278y (kig —a(ip — ix) — ZZ(k - m)i,,,).
m=0

(12)

In what follows we shall take the inductances of the
vertical branches to be negligible (a = 0). In the above
expression, the terms in large parentheses depend both
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Fig. 2. Maximum Josephson current of the parallel array of Fig. |
as a function of the normalized applied flux Wex, for N = 9,
Bt =0 and for the following values of the S;/Sg ratio: (a) 0.1;
(b) 0.2; (c) 0.4. The dotted line represents the single junction
Fraunhofer-like envelope.

on ig and on the currents i,. It is therefore evident
that iz can now only be implicitly defined by Eq. (7).
Moreover, we still take all the junctions to be identical
and assume a slowly varying flux distribution in the
array, so that we may set fx = fo, as done before, and
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write
N N
is=Y ik=Y fosin [¢0 — 2Tk Wy
k=0 k=0
k—1
+27T,3L(ki,g—22(k—m)i,,,>:|. (13)

m=0

By trigonometric identities we can recast Eq. (13) in
the following form,

N
ip= foZ{ sin(@o — 27k Vex)

k=0

k=1
X COS [ZW,BL (kig - 2Z(k - mﬁm)]

m=0
+ cos(@p — 2TkWex)

k—1
X sin [%ﬁL (sz 2> (k- m)im)] } (14)

m=0

By expanding the sine and cosine in terms of the pa-
rameter 3; up to the second order, we may write, after
having gathered the coefficients of order 0, 1 and 2 in

7

Ai% + Big + C =0, (15)
where
N
A=2m foBL) | K sin(go — 2mk¥er), (16)
k=0

N
B=1-2mfoBL (Z kcos(go — 2mkWey)

k=0
N k=1
+AmfoBL D Y k(k—m)sin(po — 2mk¥Pe:)
k=0 m=0
N k-1
x sin(@p — 27m¥ex) — 47 foBL Z Z m(k—m)
k=0 m=0

x cos( g — 2mmW¥e) cos(pp — 27Tk11’ex)> (17

and

C N k—1 k—1
sy (TS k-m

k=0 m=0 m’'=0
X (k—m')sin(@y — 27k¥ey)

X sin(@g — 2rmWe,) sin{ o — 27rm' Wey)
k—1 m—1

- 22 Z(k —m)(m—m') cos(pp — 2mkWey)

m=0 m'=0

x sin(@g — 2m' W, ) cos(@p — 2*n'm‘1’ex)>

N k-1

+ 4 foBL Z Z(k — m) sin(@o — 27Tm¥ey)

k=0 m=0

N
X cos(@g — 2TkWex) — Z sin(@g — 2mkWey).
k=0
(18)

From the above expressions for A, B, and C we notice
that, for vanishing fo values, ig vanishes. For non-
zero values of fp, on the other hand, we may solve
Eq. (15) and look for the maximum of iz at a fixed
value of the externally applied flux ¥ by letting ¢
vary in the interval [0, 277].

4. Results and discussion

Having derived the equation for the normalized i
current (Eq. (15)) by a perturbative expansion up to
second-order terms in the parameter 8;, we can now
numerically study the magnetic field dependence of
the maximum Josephson current of the array shown in
Fig. 1. Naturally, this semi-analytic approach is valid
only if the parameter B; is such as to allow the per-
turbative expanston. We shall take a rough estimate of
the range of validity of our analysis by writing 8 <
1/ 27rN?. We therefore notice that, while for small N
values this method can be used up to significant val-
ues of By, this is not anymore true for large N’s. We
shall now discuss the main features of the numerical
results obtained via this approach.

The maximum normalized Josephson current i. is
derived as a function of the normalized external mag-
netic flux ¥, with the aid of Egs. (15)-(18) by a
rather simple numerical algorithm. This algorithm, as
already specified in the previous section, is constructed
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Fig. 3. Maximum Josephson current of the parallel array of
Fig. | as a function of the normalized applied flux Ve, for
Sy/8Sp=10.1,0.2,0.4, B = 0.01 and for the following values for
N:(a) N=1, (b) N=2.

in such a way as to allow the variable ¢ to vary in the
interval [0, 277] at a fixed step; before a new increment
of this variable is made, the i, value is recorded and
compared with the one obtained in the previous step.
Only the greatest value of i. is retained at the end of
the whole process for a fixed value of the normalized
flux. In this way, we have derived the i, versus ¥
curves for different values of the SQUID parameter
B and of the surface ratio S;/Sp and for a different
number of loops N.

First, let us consider the By = 0 case for N = 9.
Resulting i, versus P curves are shown, for values
of the surface ratio S;/So = 0.1, S;/S = 0.2 and
S;/So = 0.4, in Figs. 2a, 2b and 2c, respectively. The
single junction Fraunhofer-like pattern determines the
envelope under which the quantum interference of the
junctions causes an interference pattern with a unitary
pseudo-periodicity in ey The height of the maximum
at Yex = 0, as is well known, is equal to the number of
junctions in the array and the interference minima are

‘IIBX

Fig. 4. Maximum Josephson current of the parallel array of
Fig. 1 as a function of the normalized applied flux Wex, for
$7/S0=0.1,0.2,04, B, =0.1 and for N = L.

always zero. Moreover, a change of the surface ratio
S;/So results in a change of the pseudo-periodicity of
| fo| as a function of ¥ as it is seen from Figs. 2a-2¢
where the function | fo| is shown by means of a dotted
line.

At finite B, values, on the other hand, higher lying
minima are seen to appear in the i. curves. In Figs. 3a
and 3b, for example, the maximum Josephson current
versus the applied flux ¥ is reported for N = 1 and
N = 2, respectively, when B, = 0.01. The surface ratio
values S;/So = 0.1, 5;/So = 0.2 and S, /Sp = 0.4 were
chosen, and the curves are shown in the ¥, range of
[—4,4]. Due to the single-junction envelopes, the i,
maxima of the interference pattern are depressed as
the S; /S, ratio grows as in the 8 = 0 case, while the
i. minima become larger than the null value attained
for By = 0. The depression and the splitting of the
secondary peak at ¥, = 2.5 in Fig. 3b for S;/S =
0.4 is a consequence of a zero in the Fraunhofer-like
envelope. Indeed, this external envelope has zeroes for
Wex = nSy/S; where n is an integer. For n = 1 and
$;/S0 = 0.4, the half-integer secondary peak of the
interference pattern is therefore suppressed, and, as a
consequence, is split into two parts.

For increasing B3, values the rise of the minima
becomes more and more evident for decreasing values
of the junction loop area ratio, as it can be seen in
Fig. 4, where we report the magnetic field dependence
of the maximum Josephson current when N = 1, 8; =
0.1, and S;/So = 0.1,0.2,0.4. The minima are now
significantly different from zero.

In Fig. 5 we compare the i, curves for different val-
ues of B; = 0,0.05,0.1, when N = 1and §;/So = 0.1.
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Fig. 5. Maximum Josephson current of the parallel array of Fig. 1
as a function of the normalized applied flux ¥ex, for N = |,
B =0,0.05,0.1 and S;/Sp =0.1.

In this figure the minima are higher in the 8, = 0.1
case than in the other two cases. Here it is worthwhile
to remark that the rise of the minima is a consequence
of the broadening of the major peaks due to the fi-
nite self-flux of the loop currents, which tend to break
phase coherence.

We would like to point out that the numerical so-
lution as given by solving the self-consistent problem
(Eq. (13)) is in agreement with the numerical re-
sults obtained with the perturbative analysis carried
out for the above cases. Of course, numerical solu-
tions obtained by self-consistent algorithms require a
much more computer time. The study of the magnetic
response of these types of systems for values of the
parameter 3, which do not fulfill the requirement put
forth by our analysis can be carried out by means of
the dynamical equations for the phase variables (Eq.
(3)). In this way, one can treat cases involving non-
uniform initial field distributions in the array and have
a better defined correspondence between numerical re-
sults and experiments. This approach will be pursued
in future works.

Finally, despite the fact that our analysis can be ap-
plied in a rather small range of variation of the pa-
rameter 3;, the results obtained by this semi-analytic
approach qualitatively agree with experimental data of
Ref. [6].

5. Conclusions

In order to study the magnetic field dependence of
the maximum Josephson current in a homogeneous
parallel array of N + 1 Josephson junctions, we de-
veloped a perturbative analytic approach up to second
order terms in the parameter 83, . For finite B8, values,
but still small enough to allow a perturbative analysis
to the problem, we found a rise of the i, minima in the
I.(H) pattern and a broadening of the major peaks as
B increases.
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