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Abstract

The static magnetic response of a three-dimensional Josephson-junction array is described. The dynamical equations for
flux transitions in the network are derived taking into account the magnetic energy of the circulating currents. In particular,
when the external magnetic field H is applied in a direction perpendicular to the network-base, we analytically calculate

the lower-threshold field HV. © 1998 Elsevier Science B.V.
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1. Introduction

The low-field electromagnetic properties of high-T
granular superconductors [ 1] can be well described by
means of Josephson junction networks [2,3]. Indeed,
these networks can be adopted as equivalent circuital
models for this class of superconducting systems [2],
which can be thought to be a collection of supercon-
ducting grains coupled via Josephson junctions. In this
way, an equivalent circuit can be constructed by asso-
ciating a Josephson junction with each contact region
between adjacent grains and an inductor with each
current path in order to take account of the self field
generated by the current. In particular, it can be shown
that there exists a lower threshold field H'" [4,5] be-
low which a three-dimensional granular superconduc-
tor is in the Meissner state. For fields higher than H(D
flux penetration occurs because of 27 phase slips of
the junctions located at the system boundaries. More-

over, Josephson junction arrays can be used as model
systems of superconducting devices. The extension of
these models in three dimensions, therefore, may give
rise to a new series of applications. Indeed, these net-
works can be adopted, as an example, as a first step in
realizing magnetic field sensors capable of detecting
the local field intensity and direction with very high
spatial resolution.

In the present work we therefore study the low-
field static magnetic properties of a three-dimensional
(3D) array of Josephson junctions [5-7] consisting
of n cubes aligned along a fixed direction in space.
We derive the dynamical equations for flux transitions
in this system in the presence of an externally applied
magnetic field H. By numerically integrating this set
of nonlinear differential equations, the flux and the
current distributions are found for n = 2. It is shown
that the 3D array does present a first threshold field
value H1, below which the system is able to effec-
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Fig. 1. (a) The circuit model: each box contains an inductor and
a Josephson junction, as shown in the inset. (b) Schematic repre-
sentation of the current variables for two single unit of mutually
orthogonal faces in the cubic network.

tively shield the external field. Furthermore, the lower
threshold field H) in the 3D array with an arbitrary
number of cubes can be analytically calculated for ex-
ternal fields applied perpendicular to the network base.
These analytic results for H(!) are thus finally com-
pared with the numerical ones computed for n=1,2.

2. The model dynamical equations

In the present section we write the dynamical equa-
tions which govern flux transitions in a 3D network,
for different directions of the applied field. The cu-
bic network shown in Fig. 1a, for example, consists of
twenty inductively coupled Josephson junctions (JJs)
located at the midpoints of the cube sides. Let us
then start by associating, with each JJ in the network,
a gauge invariant superconducting phase difference
¢¢(r), where r = (x,y,2) corresponds to the posi-
tion of the origin of the unit cell and ¢ is the direction
along which the junction lies. The flux, &, linked to
the cube face placed in the cell at position r and lying
in the p-£ plane, can be labelled through a standard
tensorial notation. Namely, we take the corresponding

normalized flux to be ¥ (e (1) = Ppey (1) /Do, with
@, being the elementary flux quantum. Moreover, the
mesh current / flowing in the 77-¢ plane at position r is
expressed in terms of a normalized current iz (7) =
Iey(r) /1o, where Iyp is the maximum Josephson
current of the junctions. The currents circulating in a
given face are taken to be positive when seen to circu-
late in the counterclockwise direction by an external
observer placed at infinity on the positive side of the
axis orthogonal to the face itself (see Fig. 1b).

By imposing fluxoid quantization to each closed
loop of the network, one can write the following rela-
tions between the ¥ and the ¢ [5],

27 ey (1) = 25y (1) + @ (r + afp)
— @e(r) — @y (r +ak) + @y (1), (1)

where n(y) (r) are integers and (n¢) takes on the
following form: (yz), (zx), (xy). By introducing a
translation operator f',,, where the index 7 gives the
direction along which the translation is performed over
the distance of a cube side “a”, the operator T, acts
upon the position vector r in the following way [5],

Toee(r) = og(r +afy) . (2)

The same is true for the currents i(,,) (r), the integers
n(uvy(r) and the fluxes ¥(,,)(r). The fluxes and the
currents can be expressed in the following compact
form,

Faap) (1) = DD mind) (1,7 iy (1)

rouv
+ poH-Sne) (1) , (3)
where S(yz) (r) is the area vector pertaining to the

cube face orthogonal to the n-¢ plane, mzﬁ,‘g)) (r,r)

are the mutual inductance coefficients between the
(n€) current loop at position r and the (uv) current
loop at position 7’ and H is the externally applied field.

Moreover, with the aid of the RSJ model [8], for
each junction in the network, we can write

Oslee(r)] = €culican (r) — icen (r —ad)],

.y
(4)
where €g,, is the Levi-Civita symbol and
@y d .
05(") = 5—= — () + Issin(") (5)

27R dt
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is the nonlinear Josephson operator, with R being the
resistive parameter, taken to be the same for all JJs.
The above set of nonlinear ordinary differential
equations applies in general to a 3D cubic array of
Josephson junctions and must be specialized to the
case of a finite system by taking care of setting to zero
all the currents which are not present in the system.

3. Static magnetic response

Having derived Eqs. (1)-(5), which completely
define the magnetic response of the three-dimensional
Josephson junction array, we can now numerically in-
tegrate, for n = 2, a set of twenty coupled nonlinear
differential equations with respect to the phase vari-
ables. A standard fourth order Runge-Kutta algorithm
is used. The externally applied magnetic field H is
taken to lie in the y-z plane and to make an angle
@ with respect to the z-axis as in Fig. 1a. By deter-
mining the stationary magnetic states after zero-field-
cooling (ZFC) we study how the system evolves un-
der a small enough variation AH of the applied field
H lying along a fixed direction in space. A similar
analysis for n = 1 has already been given in a previous
work [5].

The flux distribution is obtained by Eq. (1), and
the current distribution is derived from Eq (3) by
inverting the mutual inductance matrix m(nf) (r r).
Once the values of the model parameters are esti-
mated, the flux and the current distributions can be
found. Let us, then, suppose that each face of the
cube in Fig. 1a contains a square current loop made
of thin cylindrical wires of diameter 2r. Therefore,
for a = 10 um, where a is the length of the cube
side, for a/r = 10? and for maximum Josephson
current values of the order of 100 nA, we find [ =
3.3 x 10~!' H [9,10], estimating the adimensional
SQUID parameter 8 = Iljo/®; to be of the order
of unity. Let us, now, define the mutual inductance
values of the m matrix in Eq. (3). Their compu-
tation, performed in the same way as in Ref. [5],
gives us the following values: m(”) (r,r)/l=—-0.24;

xy)
E:‘;;(r r+ay)/l = —0.016; m (r,r +2a9) /1 =

(x2)

—0.006; ml%)(r,r+ax)/l = 003 mi(r,r+

a% + ap)/l = 0.008; mP3) (r,r +ap)/l = —0.196

(yz)
and m{X3) (r, r + 2a§) /1 = 0.006.
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Fig. 2. Flux linked to the eleven cubic faces as a function of the
normalized applied flux ¥ for 8 = 2.0 and for the following
field orientations: (a) 8 = 0; (b) 8 = /3. In (a) we let Wex vary
in a cycle in the interval [0, 15]. In (b) W is taken to increase
from 0 to 10.

The resulting flux distributions in the system are
shown in Figs. 2a,2b, where 8 = 2 has been taken. In
Fig. 2a, we plot the normalized flux ¥, as a function
of the normalized applied flux Vex = uoHSo/® in
the case the externally magnetic field is applied in
a direction perpendicular to the base of the network
(8 = 0). Let us define a generalized SQUID parameter
Bn = L,Iyo/n®y where L, is an effective inductance
associated to the n cubes. Here, as in the case of an
r.f. SQUID, we notice that there exists a critical value
B¢ below which flux penetration is reversible for any
field value. For the chosen value of 8 = 2, however,
B2 > B5 = 3/2m and, at ¥ex = ¥V, where ¥V is
the lower threshold ¥-value, the system shows an
irreversible flux transition involving three flux quanta
for each cube.

By changing the field direction, a different flux
penetration mechanism occurs. This is evident from
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Fig. 3. Mesh currents circulating in the eleven cubic faces as a
function of the normalized applied flux ¥ex for 8= 2.0 and for
the following field orientations: (a) 8 = 0; (b) 6 = /3. In (a)
we let Wex vary in a cycle in the interval {0, 15]. In (b) Ve is
taken to increase from O to 10.

Fig. 2b, where 6 = /3. In the 8 # 0 cases we have
nonvanishing values of the quantities ¥ ;.. Increasing
the #-value from 8 = 7/6 to @ = 7 /2, for example, it
can be seen that the number of fluxons penetrating in
the x—z cube faces, at each transition point, increases.

In Figs. 3a,3b, the normalized currents i(,,) as a
function of ¥, are reported for § = 0 and & = 7/3,
respectively, when B = 2. These current distributions
show discontinuities corresponding to the flux transi-
tion values in Figs. 2a,2b.

4. Lower threshold field

Let us, now, analytically derive the lower threshold
field for flux penetrations after ZFC in the 3D network
consisting of n cubes along the y direction. In what
follows we shall take an applied magnetic field H in
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a direction orthogonal to the n-cubes base, so that an
exact analytic solution for ¥{! can be given. Defin-
ing ip and ¥, to be the normalized current circulating
in the lower and in the upper base of the network and
the normalized flux pertaining to the network, respec-
tively, the current-flux relations can be written as

i) =¥y =0 if (uv) #(xy), (6)
. Y — nW¥ex

1 = ————— for = ’ 7
b (LTl ®o) (uv) = (xy) (7)
where

L,=n[l +m2:§;(r,r +az)]

+2[(n - 1)[mg§;(r,r + ay + az)

E’;"v,;(r r+ap)

+ (n=2)[m(2)(r,r + 2a9 + a?)

g;;(r r+2ay)] +-

+m{3) (r,r + (n— 1)ay + a2)

+mi(rr+ (n—1)ay)].

For symmetry reasons, the stationary solutions of
Eqs. (4) are given by the following,

singy = ip, (3)

sing, = —ip, ¢))

sing, =0. (10)

Moreover, fluxoid quantization gives

q,t=_(n+1)¢b’ (11)
Kl

where ¢, is the independent phase variable for all
junctions lying in the base face of the network. We
may notice that the current flowing in the junctions
lying in the shared faces of the cubes is zero. There-
fore, the corresponding phase variables are also zero.
Substituting Eq. (7) and Eq. (11) in Egs. (8)~(10),
we obtain

Yy + Basin[nm¥,/(n+1)] = ¥ex (12)

where ¥}, = ¥,/n. Setting the derivative of ¥., with
respect to ¥ in Eq. (12) equal to zero, the minimum
value of B,, namely B¢ = (n + 1) /nr, can be found.
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Fig. 4. Lower threshoid field in a 3D network as a function of
the SQUID parameter 8 for an axially applied external magnetic
field for n = 1,2 and 10.

The lower threshold flux value,

2
lI’e(xl)=/§n 1_(n+~1>
V nm By

2
+n+1[77—-sin_] 1_(n+1) ], (13)

nw nﬂ'Bn

can be derived by solving simultaneously Eq. (12)
and the equation obtained by setting d¥ex/d¥; = 0.

Let us, now, introduce the lower threshold field,
H'V, which is proportional to %!’ through the con-
stant factor @/ 0So. In Fig. 4, we compare the an-
alytical H(" behaviour in terms of 8 for n = 1, 2
and 10 when 6 = 0. In this figure the 3, values are
By = 1.038, B, = 0.848 and Bjo = 0.688 for the
3D-network consisting of one cube, two and ten cubes
along the y-direction, respectively. These parameters
are computed by substituting the mggg)) (r,r") coeffi-
cients into the expression for L, and then by setting
B. = (1/n)(L,/I)B. We may notice that increasing
the number of cubes in the network, the H'!’ and
B¢ values decrease. Finally, a numerical evaluation of
HM is shown in Fig. 5, for n = 1,2 and 8 = 0. This
evaluation for H(1 is done by inspection on the nu-
merical ¥(,,) Vs ¥(.x) curves. Indeed, by taking the
value of ¥,y corresponding to the first irreversible
flux transition in the system and by defining this value
as ¥, one can set H) = (®o/poSo) ). As it
can be seen from Fig. 5, the numerical and analytical
evaluations of H! are in agreement.
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Fig. 5. Lower threshold field in a 3D network as a function of
the SQUID parameter 8 for an axially applied external magnetic
field for n =1 and 2.

5. Conclusions

We have studied the low-field static magnetic prop-
erties of a three-dimensional array of Josephson junc-
tions. In this framework, the dynamical equations for
flux transitions have been derived for n-cubes lying in
a fixed direction in space. We have numerically calcu-
lated the expression for the lower threshold field H(D
for n = 2 and for an external magnetic field orthogonal
to the base of the array. A general analytic solution for
H is also derived for an arbitrary number of cubes
for 8 =0.
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