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Abstract—We study the response of a current biased
three-dimensional cubic network of inductively cou-
pled Josephson junctions for different directions of the
applied magnetic field by means of numerical simula-
tions. We discuss the feasibility of these systems to
be used as sensitive vectorial magnetic field sensors.

I. INTRODUCTION

There is widespread general interest in sensitive mag-
netic field sensors. Nowadays, these devices are used in
a great variety of applications, from biomagnetic mea-
surements to maintenance testing of aircraft [1]-[5]. A
good example of widely used sensitive sensors is given by
SQUIDS [6],[7]). Their planar geometry, however, allows
measurement of one magnetic field component only, while
the physical quantity to be detected is a vector. As a
candidate for a sensitive vectorial magnetic field sensor
we have considered the three-dimensional cubic network
of inductively coupled Josephson junctions (JJs) shown
in Fig. 1. In our system, consisting of a cube containing
twelve junctions, the bias current Ip;45 is injected from the
node at position 7#1=(a,0,a), where a is the side of a single
square loop, and is drawn from the node at the position
73=(0,a,0). The external magnetic field H is directed in
space as shown in the upper right inset of Fig. 1. Each
branch of the system carries a current ig(7), where £ de-
notes the axis to which the branch is parallel and 7 is the
position in space of the starting point of the branch itself,
taken to be oriented according to the positive £-direction.
A voltage Ve (7) can be detected across each branch.

We study the magnetic field response of the system by
numerically evaluating the time average of the voltages
Ve (7) as functions of the magnetic field amplitude for fixed
values of Ip;es and of the magnetic field direction. By
analogy with the well-known operation of a dc SQUID,
we argue that the system could be adopted as a sensitive
vectorial magnetic field sensor.
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II. THE EQUATIONS

A set of coupled non-linear differential equations, de-
scribing the dynamics of the gauge-invariant phase differ-
ences ¢ (7) across the junctions in the cubic network, can
be obtained by means of the RSJ model [8]. By introduc-
ing the non-linear Josephson operator O, such that:

@y d

04() = —=—() + Ijosin(-), 1
1() = 555, () + Losin() (1)
where ®¢ is the elementary flux quantum and Ij9 and
R are the maximum Josephson current and the resistive

parameter of the junction, respectively, we can write:

Olpe(7)] = ig (7). 2)

In (1) we have implicitly assumed the system to be ho-
mogeneous. The currents i¢(7) can be expressed in terms
of the fluxes ®,, linked to the six loops. Here, the indices
(uv)=(yz), (2z), (zy) denote the fluxes linked to the loops
lying in the homologous planes, so that:

QJ“V('F‘) = leu(F) + Mlyu(F+ aé) + P'Og : guu(F) (3)

@u,,(f"+a£) :”uu(F+ aé)“‘MIuv(F)"‘ (4)
poH - §I_“,(T_“+ aé)

where
I, (7) = i, (F+afp) — i, (F) —ip(F+ad) +iu(7)  (5)

and I,,(F+ a€) is obtained from (5) by letting (7)— (7 +
aé). In (3), (4) S"M,, is the area vector pertaining to
the (uv)-loop, [ is the self-inductance coefficient of each
branch in the (pv)-loop and M is the mutual inductance
coefficient between this loop and a non-orthogonal branch.
Finally, the fluxes can be related to the phase differ-
ences ¢ (7) by means of the fluxoid quantization relations

[9]:
I q)l“’ (F)

= 21, (F) + Ouw (6)
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Fig. 1.
Josephson junctions. Each branch contains a Josephson junction
and an inductor as shown in the bottom inset. The field direction
is indicated in the upper right inset and the current bias is injected
from the (a, 0, a)-node and is drawn from the (0, a, 0)-node.

Three-dimensional cubic network of inductively coupled

where n,,’s are integers and
Ouv = pu(T+ ad) — pu(F) — pu(F+af) + (7). (7)

However, given that in the cubic circuital system we have
eight nodes, we might express all the i¢(7) in terms of
a chosen set of five independent currents. In this paper
we have chosen the following: i5(7), iz (7 + a@), iz(F +
afj + az), iy(F+ az), i,(F+ az). In this way, (3), (4) can
be inverted to give the independent currents in terms of
the forcing terms Ip;qs and p,oﬁ . §HV and of the fluxes,
which can be expressed in terms of the phase variables
we(7) by (6),(7). Therefore, (2) represent the non-linear
ordinary differential equations describing the dynamics of
the phase variables and, thus, of the observable physical
quantities, for different values of the forcing terms. In
particular, then, the voltages V¢(F) can be expressed as
follows [8]:

die() | @odpe()

V ~ ==
¢(7) dt 2 dt

(8)

III. THE RESULTS

Integration of the non-linear ordinary differential equa-
tions (2) gives us complete knowledge of the time evo-
lution of the macroscopic physical quantities as, for ex-
ample, the normalized voltages ve(7)=V¢(7)/RIjo. In or-
der to relate our numerical analysis to experimentally de-
tectable quantities, we need to average the voltages over
the time variable t, in such a way that

1 to+T
< vf(F) >= —/ ve(’l_")dt, (9)
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Fig. 2. a)Time dependence of the normalized voltages v, (7 + aZ),
vy(F), v:(F) for a =0, 8 =0, B = 0.1, ip;qs = 3.2 and ¥, = 1.8.
The normalized time 7 is (2w Rt)/1.

b)Average normalized voltage < vz(F + a2) >, < vy(F) > and <
vz(F) > versus the normalized applied flux ¥, for a=0, 6=0, 8 =
0.1 and 24,5 = 3.2.

where < wv¢(7) > is the observable quantity related to
v¢(7). Numerically, the averaging can be done either by
knowledge of the period of v¢(7), if it exists, or by inte-
grating the function v(7) over a long enough period of
time T'.

The set of equations given by (2)-(8) has been inte-
grated by a standard fourth order Runge-Kutta algo-
rithm. Care has been taken to let the forcing term vary
by small enough increments, letting the system reach its
stationary state corresponding to the augmented value of
the external current bias or applied field, before a new
increment of the same guantity was performed. The first
< vg > vs. \Ile,::L‘}fT—Q curves, Sg being the area of a
single square loop, are given in Figs. 2-3 for a given value
of the parameter 8 = %g"-, for ipigs = 1}-;%‘- = 3.2 and
for two different field directions (a=0; =0, 7/4). In par-
ticular, in Figs. 2a, 3a we show the time dependence of
the normalized voltages v, (7 + a2), vy(F) and v,(F), for
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Fig. 3. a)Time dependence of the normalized voltages v (7 + a2),
vy (7), vz (F) for a =0, 80 =7/4, B =0.1, ipiqs = 3.2 and T, = 1.8.
The normalized time 7 is (2w Rt)/!.

b)Average normalized voltage < vz(F + a2) >, < vy(F) > and <
v, (7) > versus the normalized applied flux Ve, for a=0, 8=m/4,
B =0.1 and ip;qs = 3.2

tbias = 3.2, Yer = 1.8, a = 0 and, respectively, for the
angles § = 0 and n/4.

We note that Figs. 2a and 3a show a very clear time
periodicity. In Figs. 2b and 3b, on the other hand, we re-
port the time-averaged quantities of the normalized volt-
ages < vg(F+az) >, < vy(F) > and < v,(F) > vs. U,y for
the same value of ip;,, and for the same field directions as
in Figs. 2a, 3a. .

These curves are particularly interesting, since they
show that the system follows regular < ve(7) > vs. ¥gq
patterns for external fields along these two directions. The
periodicity AW, with which these patterns appear can be
related to the invariance of the stationary states of the sys-
tem with respect to the external forcing term ¥., [6]. Let
us transform the phases, the fluxes and the n,, integers
as follows:
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Fig. 4. a)Time dependence of the normalized voltages vz (¥ + aZ),
vy (F), v, (F) for a =0, 0 = 7/6, § = 0.2, piq = 3.2 and W, = 1.8.
The normalized time 7 is (27 Rt)/1.

b)Average normalized voltage < vz (7 + 6£) >, < v,(F) > and <
vz(F) > versus the normalized applied flux ¥, for a=0, 8=mn/6,
ﬂ =0.2 and Tbias = 3.2.

0y (F)you(T+af) e, (F) + 2n, 0, (F+ap) + 2 (10)

B, (F)—®uu(7) + ke Po 5 npw(F)—nu (F) + ke
where the k¢’ s are integers and £#pu, v. Let also the cor-
responding translated quantities along £#u,v be trans-

formed in a similar way. Now, in order to keep the sta-
tionary equations for the system invariant, we need to let

(11)

or
(12)

where the s¢’ s are the nonnull components of the unit
vector H in the external field direction. This analysis
shows that, in the case only one component s¢ is different
from zero (s¢ = 1), we have A¥.; = 1. On the other
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Fig. 5. Average normalized voltage < vy () > versus the normalized
applied flux ¥, for a=0, 8 = 0, ip;s = 3.2 and for: 8 = 0.1;
B =02

hand, if there are two nonnull components of H (let us
say sz and s;), then AU ,=ky/s;=k,/s,, thus requiring
Sz/s; to be a rational number. Following this type of
reasoning, we have AU, = 1 for & = 0 and § = 0, and
AV,,=v2 for « = 0 and § = =/4, as it appears from
Figs. 2b, 3b. It is not always possible to detect a simple
periodicity AW¥,,, as, for example, in the case of a = 0
and § = 7 /6. In Fig. 4a we show the time dependence of
the same three voltages of Figs. 2a, 3a fora =0, 8§ = /6,
B = 0.2, ipigs = 3.2 and ¥, = 1.8. In Fig. 4b we report
the time average of these voltages as a function of W,
for the same choice of 8 and ipiqs as in Fig. 4a. While
the time dependence of the voltages v;(F+aZ), vy(7) and
v, (7) show a clear periodicity in time, their time-averaged
values plotted in terms of ¥, loose the regular behavior of
the curves in Figs. 2b, 3b. However, as (11), (12) imply, at
least a quasiperiodic dependence on V., is always present.
This point clearly opens the way for further investigation
on the structures appearing in the < vg > vs. ¥, curves
for irrational ratios of the field components.

" In Fig. 5 we finally show the dependence of the average
voltage < v, (7) > on an axial magnetic field for a value
of the parameter 8 (8 = 0.2) greater than that of the
corresponding curve in Fig. 2b and for the same choice of
other parameters as in Fig. 2b. From these curves we may
see that the system behaves like a dc SQUID, showing a
decrease of the average normalized voltage for increasing
B values at a fixed Ug, and ipigs [8].

From the above results we argue that the cubic net-
work of JJs shows time periodicity in the voltages across
its twelve branches. Fixing the current bias, this time pe-
riodicity depends on the applied field direction. Moreover,
the averaged voltages plotted as a function of the field in-
tensity present periodicities in the case the non-zero field
components are commensurate. This behavior, though
being similar to that of a SQUID, depends on the field di-
rection in a predictable way. One can thus envision future
applications of these systems as vectorial sensors mainly
in two ways. The first consists in extracting the external

fleld intensity and direction from the system’s electrody-
namic response by solving an inverse type of problem. The
second consists in allowing the network to rotate in space
in a controlled way until a predefined known response is
achieved. In this second case, though, one has to take care
of choosing the model parameters in such a way to have a
reversible magnetic response for every field direction [10].

IV. CONCLUSION

We have studied the magnetic field response of a cur-
rent biased three-dimensional cubic network of inductively
coupled JJs. The voltage across the branches of the net-
work has been numerically calculated, for fixed values of
the external forcing terms 4p;,5 and ¥¢; and for different
field directions, as a function of time. The time average of
the above voltages has also been reported as a function of
U,,. These results show that the system’s electrodynamic
response depends in a predictable way on the external field
direction, making the cubic network & valid candidate for
a sensitive vectorial magnetic field sensor.
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