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ABSTRACT
The electrodynamic response of a current-biased inductive network of small

Josephson junctions located at the edges of a cube of side a is studied. The
dynamical equations for the gauge-invariant phase di� erences across the
junctions are derived in the presence of a constant magnetic ® eld H applied
along an arbitrary direction in space. When H is applied in a direction parallel
to one of the sides, it is found that the time evolution of the voltages across the
branches of the network reproduces the well known features present in
superconducting quantum interference devices.

} 1. INTRODUCTION
The electrodynamics of Josephson junction networks has been studied since the

1980s (Nahajima and Sawada 1981, Lobb et al. 1983, Ebner and Stroud 1985). After
the discovery of high-T c superconductors (Bednorz and Muller 1996), these net-
works were adopted as equivalent circuits for the study of the physical properties
of this new class of materials (Clem 1988, Tinkham and Lobb 1989). However, the
attention of researchers was mainly devoted to one-dimensional or two-dimensional
Josephson junction arrays (Phillips et al. 1993, Wolf and Majhofer 1993, Auletta et
al. 1994, Chen et al. 1994, Paasi et al. 1996). Only more recently, has the electro-
dynamic response of three-dimensional (3D) Josephson junction networks been
investigated (Yukon and Lin 1995, De Luca et al. 1998).

Among the electronic devices modelled through simple Josephson junction net-
works we can mention the superconducting quantum interference device (SQUID).
SQUIDs are versatile magnetic ® eld sensors, ® nding applications in biomagnetic
measurements, such as magnetoencephalography (HaÈ maÈ laÈ inen et al. 1993) and mag-
netocardiography (Rijpma et al. 1997), as well as in geophysical monitoring
(Dantsker et al. 1994) and in non-destructive maintenance testing of aircrafts
(Krause et al. 1997). These devices, owing to their planar geometry, can detect
only one ® eld component. On the other hand, a current-biased 3D Josephson junc-
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tion network could be adopted as a model of a 3D device able to detect the complete
vectorial nature of an externally applied magnetic ® eld H.

In the present paper we therefore study the electrodynamic response of a current-
biased inductive cubic network of small Josephson junctions. In } 2 we write the
complete set of equations governing the dynamics of the gauge-invariant phase
di� erences across the junctions. In } 3 we solve the resulting nonlinear ordinary
di� erential equations by a standard numerical procedure and, by relating the
phase variables to observable electrodynamic quantities, we show that the system’s
behaviour is similar to that of a SQUID in the case when H is aligned with the
direction of one cubic side. Finally, voltage± current …V -I† curves are derived for
di� erent ® eld orientations. Conclusions are drawn in the last section.

} 2. EQUATIONS

A current-biased cubic network of inductively coupled Josephson junctions is
shown in ® gure 1. A Josephson junction is placed at the midpoint of each branch of
the network. The superconducting state of each junction is de® ned through the
gauge-invariant phase di� erence ’¹…r†, where r ˆ …x ;y;z† denotes the position of
the junction and ¹ is the direction along which the junction lies. In order to take
account of the magnetic energies of the branch currents i¹…r†, an inductor of induc-
tance L is placed on each branch of the network. The dynamical equations for the
’¹…r† values can be derived with the aid of the resistively shunted junction (RSJ)
model (Barone and PaternoÂ 1982). By neglecting capacitive e� ects in the junction
and by considering a homogeneous network, we can de® ne a nonlinear Josephson
operator
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Figure 1. Current-biased 3D Josephson junction network. The current is injected at node
(a;0;a) and is drawn at node (0;a;0). Each box in the network contains a resistively
shunted junction and an inductor, as is shown in the lower part of the ® gure.



OJ…¢† ˆ F0

2pR
d
dt

…¢† ‡IJ sin …¢†; …1†

where F0 is the elementary ¯ ux quantum and where R and IJ are the resistive
parameter and the maximum Josephson current respectively of each junction in
the network. In this way, the 12 dynamical equations for the phase variables can
be written as follows

OJ‰F¹…r†Š ˆ i¹…r†: …2†
The currents appearing on the right-hand side of equation (2) can now be expressed
in terms of the phase variables according to the following procedure.

First, write the ¯ uxoid quantization relations. Let us then consider a cubic
structure as the result of a given number of translations of a triad of mutually
orthogonal adjacent squares of side a with a common point in the origin. The generic
magnetic ¯ ux through the cubic face parallel to the ·-¸ plane (·-¸ ˆ y-z, z-x, x-y†
of the triad having a common point in r can be denoted by F·¸…r†. In this way, we
can write

2p
F0

F·¸…r† ˆ 2pn·¸…r† ‡Y·¸ ; …3†

where n·¸…r† is an integer and

Y·¸ ˆ ’·…r ‡am̂†¡ ’·…r†¡ ’¸…r ‡al̂† ‡’¸…r†; …4†
²̂ being the unit vector in the generic ² direction. Note that, because of Maxwell
equation Ñ ·B ˆ 0, only ® ve ¯ uxoid quantization relations are independent.

Next, express the ¯ uxes F·¸…r† in terms of the branch currents and of the exter-
nally applied ¯ ux ·0H·S·¸…r†, where S·¸…r† is the area vector oriented in the positive
¹ direction (¹ 6ˆ ·;¸), so that S·¸…r ‡»† ˆ S·¸…r† ˆ a2»̂. Adding now the e� ects of
the branch currents and of the external ® eld H, we have

F·¸…r† ˆ L I·¸…r† ‡MI·¸…r ‡a»̂† ‡·0H·S·¸…r†;

F·¸…r ‡ a»̂† ˆ L I·¸…r ‡a»̂† ‡ MI·¸…r† ‡·0H·S·¸…r†;
…5†

where M is proportional to the mutual inductance coe� cient between two parallel
loops and

I·¸…r† ˆ i·…r†¡ i·…r ‡ am̂† ‡ i¸…r ‡ al̂† ¡ i¸…r†: …6†
In order to carry out calculations explicitly, we rewrite equations (2)± (6) in

matrix form. By de® ning

IS ˆ

Iyz…0†
Iyz…ax̂†
Izx…0†
Izx…aŷ†
Ixy…0†

0

BBBBBB@

1

CCCCCCA
; U ˆ

Fyz…0†
Fyz…ax̂†
Fzx…0†
Fzx…aŷ†
Fxy…0†

0

BBBBBB@

1

CCCCCCA
; Uex ˆ ·0a2

H· x̂

H· x̂

H· ŷ

H· ŷ

H· ẑ

0

BBBBBB@

1

CCCCCCA
; …7†

we can rewrite equations (5) as follows:

U ˆ GIS ‡Uex ; …8†
where G is the following 5 £ 5 matrix:
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G ˆ

L M 0 0 0

M L 0 0 0

0 0 L M 0

0 0 M L 0

M ¡M M ¡M …L ‡M†

0

BBBBBB@

1

CCCCCCA
: …9†

Note that G is non-singular, so that

IS ˆ G¡1…U ¡ Uex†: …10†
If no ¯ ux is trapped in the system at H ˆ 0, we can set n·¸ ˆ 0 in equation (3). In this
way we can write

U ˆ F0

2p
F} ; …11†

where F is a 5 £ 12 matrix and } is a column vector whose components are the 12
phase di� erences ’¹…r†. The elements of F are either zeros or §1. By equation (6) we
can now write

IS ˆ ¡Fi ; …12†
where i is a column vector, whose components are the 12 branch currents. Because of
charge conservation at the nodes, we can express the 12 components of i in terms of
® ve independent branch currents, forming a column vector iI, and in terms of a 12
component vector IB, which can be made explicit once the nodes at which the current
is injected and drawn are de® ned. Therefore, one can write

i ˆ TiI ¡ IB ; …13†
where T is a 12 £ 5 matrix with elements T ij ˆ 0, §1 and where the transpose of IB is

…IB†T ˆ …0 iB 0 0 0 0 0 ¡ iB 0 0 0 iB† …14†
for the bias current con® guration chosen in ® gure l. By combining equations (10)±
(14) we can write equation (2) symbolically as follows:

OJ…}† ‡F0

2p
A} ˆ BUex ‡…C ¡ I†IB ; …15†

where

A ˆ T…FT†¡1G¡1F;

B ˆ T…FT†¡1
G¡1 ; …16†

C ˆ T…FT†¡1F;

and where I is the 12 £ 12 identity matrix.
The set of nonlinear ordinary di� erential equations given in equation (15) de® nes

the dynamics of the 12 Josephson junctions in the current-biased network of ® gure 1.

} 3. OBSERVABLE QUANTITIES

Having derived the dynamical equations for the phase variables in the previous
section, we may now turn to the problem of calculating physically observable quan-
tities. One observable quantity is the time average of the voltage V ¹…r;t†, for which
indexing is the same as for branch currents, except for the explicit time dependence,
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which will appear in all quantities in this section, whenever it applies. The voltage
V ¹…r;t† across a branch lying in the ¹ direction can be de® ned as follows:

V ¹…r;t† ˆ F0

2p

d’¹

dt
…r;t† ‡L

di¹
dt

…r;t†: …17†

Numerically, time averaging can be computed, starting from the usual de® nition

hV ¹…r†i ˆ 1
T

…T

0
V ¹…r;t†dt ; …18†

by summing voltages over a large time interval T and then by dividing by the number
of terms in the summation. However, if V ¹…r;t† is a periodic function with period T ¹,
we can replace T with T ¹ in equation (18). In this last case,

hV ¹…r†i ˆ F0

2pT ¹

‰’¹…r;T ¹†¡ ’¹…r;0†Š ‡ L
T ¹

‰i¹…r;T ¹†¡ i¹…r;0†Š: …19†

It can be shown that, in the case when H ˆ H ẑ and for bias currents greater than the
maximum current Imax

B ˆ 3IJ, the voltages V ¹…r;t† are periodic. In ® gure 2 we report
the normalized voltages vx…0; t† ˆ V x…0 ;t†=RIJ and vx…aŷ;t† ˆ V x…aŷ ;t†=RIJ, for
which a clear periodicity can be detected. The same can be shown for the currents
i¹…r; t†. In this way, equation (19) becomes

hV ¹…r†i ˆ F0

2pT ¹

D ’¹ ; …20†

where D ’¹ ˆ ’¹…r;T ¹† ¡ ’¹…r;0†. In ® gure 3 we show how the normalized voltage
vx…0 ;t† varies for di� erent applied ® eld amplitudes, namely for Cex ˆ 2:0 and for
Cex ˆ 2:5, where Cex ˆ ·0Ha2=F0.
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Figure 2. Normalized voltages vx…r; t† ˆ V x…r; t†=RIJ for H ˆ Hẑ, ­ ˆ L IJ=F0 ˆ 1:4,
iB ˆ 3:2IJ and Cex ˆ 2:5, where the normalized time is ½ ˆ 2pRIJt=F0: (Ð Ð ),
vx…r ˆ 0; t†; (- - - - -), vx…aŷ; t†.



In order to stress the analogy with SQUIDs, we show the V -I characteristics of
the system for ® eld directions along one of the coordinate axes. The V -I curves are
calculated numerically by means of a standard fourth-order Runge± Kutta algo-
rithm. In ® gure 4 we show V -I characteristics of all branches for Cex ˆ 0 and for
­ ˆ L IJ=F0 ˆ 1:4. Here the presence of two positive branches together with their
symmetric negative counterparts should be noted. These branches correspond to the
only possible values of the currents in the network, namely §iB=6 and §iB=3. In this
case, the phase di� erence ’¹…r;t† goes through a 2p phase shift in the time interval
‰t0 ;t0 ‡T ¹Š when the junction is in the running state. It is then possible to derive an
analytic expression for the V -I curves, by setting

OJ…’¹…r;t†† ˆ K; …21†

where K ˆ §iB=6, §iB=3, and by integrating equation (21) by separation of variables
(Barone and PaternoÂ 1982) to obtain

hv¹i ˆ §…k2 ¡ 1†1=2
; …22†

where hv¹i ˆ hV ¹i=RIJ is the normalized average voltage and k ˆ …K=IJ† > 1.
In ® gure 5 we show a comparison between two V -I curves: one obtained for

Cex ˆ 0 and the second obtained for Cex ˆ 0:5. From these graphs it should be
noted that the maximum bias current Imax

B which can be injected in the network
before causing phase slip of the junctions depends on the applied ¯ ux number Cex . A
similar behaviour of Imax

B can be seen in the V -I curves shown in ® gure 6 for the
magnetic ® eld direction given by the azimuth angle ¬ ˆ 0 and by the zenith angle
³ ˆ p=6.

The above preliminary study of the observable quantities in current-biased
inductive cubic networks of Josephson junctions allowed us to derive V -I curves
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Figure 3. Normalized voltages vx…r ˆ 0; t† ˆ V x…r ˆ 0; t†=RIJ for H ˆ Hẑ, ­ ˆ L IJ=F0 ˆ
1:4, iB ˆ 3:2IJ and for Cex ˆ 2:5 (Ð Ð ) and Cex ˆ 2:0 (- - - - -), where the normalized
time is ½ ˆ 2pRIJt=F0.
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Figure 4. V -I characteristics of the cubic network of Josephson junctions for H ˆ 0, and
­ ˆ L IJ=F0 ˆ 1:4. Branch 1 corresponds to the normalized average voltages
hvy…r ˆ 0†i and hvy…r ˆ ax̂ ‡aẑ†i ; branch 2 corresponds to the normalized average
voltages hvy…r ˆ ax̂†i and hvy…r ˆ aẑ†i ; branch 3 corresponds to the normalized average
voltages hvx…r ˆ 0†i, hvz…r ˆ 0†i, hvx…r ˆ aŷ ‡aẑ†i and hvz…r ˆ ax̂ ‡ aŷ†i ; ® nally
branch 4 corresponds to the normalized average voltages hvx…r ˆ aẑ†i, hvz…r ˆ ax̂†i,
hvx…r ˆ aŷ†i and hvz…r ˆ aŷ†i.

Figure 5. Comparison between V -I curves of the cubic network of Josephson junctions
obtained for ­ ˆ L IJ=F0 ˆ 0:4 and for Cex ˆ 0 (Ð Ð ) and Cex ˆ 0:5 (- - - - -). The
voltage shown is hvy…r ˆ 0†i and the ® eld H is applied in the z direction.



for the bias current con® guration shown in ® gure 1. Starting from the periodicity of
the voltages across each branch of the network for bias currents greater than Imax

B ,
we were able to derive an analytic expression for V -I curves in the absence of an
externally applied ® eld. On the other hand, for magnetic ® elds directed along one of
the coordinate axis, the cubic system is seen to show a behaviour similar to dc
SQUIDs, even though the ¯ ux dynamics are more complex in the former. V -I curves
obtained for ® elds lying in the x-z plane and oriented at an angle ³ with respect to
the z axis show that the current Imax

B depends on ³. This last aspect is due to di� erent
shielding current distributions arising in the 3D system as the orientation of H is
changed. Because of these features, the network could be considered a model system
of a vectorial magnetic ® eld sensor. However, owing to the intrinsic complexity of
the problem, further studies are required.

} 4. CONCLUSIONS
We studied the electrodynamic response of a current-biased inductive network of

small Josephson junctions in the presence of an external magnetic ® eld H. The
system’s equations were derived in a general way, so that they can be applied to
the same network with a di� erent current bias con® guration. We numerically eval-
uated the voltages across each branch of the network and V -I curves for the bias
current con® guration shown in ® gure 1. It should be noted that, for zero applied
® eld, the V -I curves can be derived analytically. For non-zero ® eld amplitudes H
and for di� erent ® eld orientations Ĥ, on the other hand, these curves are seen to
depend on both H and Ĥ. Because of the complexity of the problem, however,
further investigation is needed in order to con® rm the potentialities to adopt this
network as a model of a vectorial magnetic ® eld sensor.
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Figure 6. V -I curves of the cubic network of Josephson junctions obtained at the ® eld
orientation ¬ ˆ 0 and ³ ˆ p=6 and for ­ ˆ L IJ=F0 ˆ 0:4 and Cex ˆ 0:8. The normal-
ized average voltages shown are hvx…r ˆ 0†i (*), hvy…r ˆ 0†i (~) and hvz…r ˆ 0†i (&).
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