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Magnetic flux distribution in a three-dimensional inductive network of Josephson junctions
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The magnetic response of three-dimensional Josephson junction networks to constant or slowly varying
external magnetic fields is studied. General equations are written for complex networks made ofn elementary
cubic cells, each cell containing 12 resistively shunted ideal Josephson junctions. The magnetic-flux distribu-
tion in the network is calculated numerically as a function of the external magnetic field for different values of
superconducting quantum interference device parameter, network size, and external magnetic-field direction.
The magnetic-flux distribution in the network is graphically shown, first for increasing and then for decreasing
values of the external magnetic flux.
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I. INTRODUCTION

Josephson-junction networks~JJN’s! have been exten
sively studied in the last few years. The electromagne
properties of these systems have become of interest afte
discovery of high-temperature superconductivity. The int
est in JJN’s derives both from their potential technologi
application as superconducting devices1 and from their use
as model systems in the study of electromagnetic prope
of high-TC granular superconductors.2

It has been proposed that three-dimensional~3D! JJN’s
can be used as vectorial magnetic-field sensors,3 so that they
might open new perspectives in the realm of supercond
ing devices. Moreover, 3D JJN’s may be used as a mode
study the electromagnetic behavior of weakly coupled gra
lar superconductors. The networks can provide a picture
the magnetic-flux distribution in the intergranular regions
these materials, which is more realistic than that provided
one or two dimensional JJN’s. Indeed, the 3D JJN may o
a new viewpoint into the three-dimensional magnetization
the superconducting bulk materials and help understand
bulk effects. Several research groups have already stu
the 3D JJN’s in the limit of negligible magnetic energy.4–7

However, regions may exist on theH-T plane where this
limit does not apply as, for example, in the case of granu
superconductors withmm-size intergranular defects in th
low-field and low-temperature limit. Here the magnetic e
ergy of the induced currents should be taken into accoun

Equations for the inductive 3D JJN were originally d
rived by Nakajima and Sawada.8 We have recently studied
the static magnetic response of an elementary cubic netw9

and derived analytic expressions for the lower threshold fi
of linearly aligned cubes10 by using circulating loop current
with inductances. However, in the 3D JJN’s the loop curre
become ineffective, since they are no more unique.

In this paper, a simple JJN model of the elementary cu9

is expanded to more complex inductive 3D JJN’s, consist
of n elementary cubes. The magnetic-flux distribution a
the magnetic-moment density of the system are studied.
model is based on the inductive effects of the branch c
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rents, which in turn can be uniquely solved from magne
fluxes. We present a few chosen examples with the aim
finding the main characteristics of the magnetic behavior
inductive 3D JJN’s. The paper is organized as follows: T
model is presented in Sec. II and the main results are
cussed in Sec. III. Conclusions are drawn in the last sec
with a special emphasis on the main characteristics of
networks of inductively coupled Josephson-junction n
works.

II. MODEL

The JJN model under study consists of elementary cu
subnetworks, which we shall call ‘‘cubes.’’ One of the cub
is sketched in the bottom right corner of the JJN shown
Fig. 1~a!. We denote the number of cubes in thex, y, andz
direction with nx , ny , and nz , respectively, so thatn
5nxnynz is the total number of cubes. In the following, th
structure of the network is identified by using the notati
nx3ny3nz . Each cube has 12 Josephson junctions, one
each edge, as shown in Fig. 1~b!. Between two adjacen
cubes there are four shared junctions and one face wi
magnetic flux in common. Let now the vectorr define a

FIG. 1. Circuital inductive three-dimensional Josephso
junction network model.~a! Network made ofn5nxnynz cubes.~b!
Elementary cubic Josephson-junction network with current v
ables.~c! Box containing inductanceL and ideal Josephson junctio
JJ, shunted with resistanceR.
9711 ©2000 The American Physical Society
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9712 PRB 61A. TUOHIMAA et al.
point in R3 and the vectorsv1 , v2 , and v3 form a right-
handed basis inR3. A cell is defined as an object consistin
of a point r and of the three unitary vectors$v1 ,v2 ,v3% so
that any point of the cell is given byr1a1v11a2v2
1a3v3 , where 0<a1 ,a2 ,a3<a, with a being the lattice
constant. The cell is denoted byCv1v2v3

(r )[$r,v1 ,v2 ,v3%
with the orientation given by the positional order
$v1 ,v2 ,v3%. Correspondingly, a face can be represented
the collection of the vectorsf v1v2

(r )[$r,v1 ,v2%. Choosing a
Cartesian coordinate system, one can identify the faces
the vectorr and by the indices (mn)5(xy), ~zx!, or ~yz!.
Thus, as in Ref. 9, we write the magnetic flux across the f
$r,m,n% as fmn(r ). Likewise, I m(r ) stands for the branch
current through a junction$r,m%.

We assume that all junctions are identical and ov
damped. The resistively shunted junction~RSJ! model is
used to describe their behavior: ideal Josephson junctions
characterized by a phase difference and the maximum
sephson currentI J , and they are shunted by a resistanceR
@Fig. 1~c!#. The gauge-invariant phase difference of the jun
tion lying along theĵ ~x̂, ŷ, or ẑ! direction in the cell at the
positionr is named bywj(r ). Now, by letting the nonlinear
Josephson operatorOJ ,

OJ~• !5
f0

2pR

d

dt
~• !1I J sin~• !, ~1!

act upon the phase differencewj(r ) and by setting the resul
equal to the current flowing through the junction, we c
write the equations of motion

OJ@wj~r !#5I j~r !. ~2!

The relations between the normalized flux variablesC
5f/f0 and the superconducting phase differences are
tained from the flux quantization condition for each clos
face in the network:

2pC~mn!~r !52pp~mn!~r !1wn~r1am̂ !

2wn~r !2wm~r1an̂ !1wm~r !, ~3!

where thepmn(r )’s are integer coefficients.
The flux quantization equations can be written for all t

faces by introducing a translation operatorT̂h , where the
index h gives the direction along which the translation
performed. The operator acts directly upon the position v
tor r . For example, when applied to the phase difference
acts in the following way:

T̂hwj~r !5wj~r1aĥ !. ~4!

Similarly T̂h acts upon the fluxesC (mn)(r ), the currents
I (m)(r ), and the flux numbersp(mn)(r ), as in Eq.~4!.

If the applied magnetic field strengthH is assumed to be
homogeneously distributed over the network, the equa
B5m0(M1H) defines linkage between the magnetic-fl
densityB and the magnetizationM . The equation relates th
branch currents and the fluxes as follows: The fluxesfmn(r )
can be calculated from the line integralrA(r )•dl
1m0H•S(mn)(r ), where the line integral is taken around th
face $r,m,n%, A~r ! is the magnetic vector potential due
y
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e

-
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-
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n

branch currents, andS(mn)(r ) is the area vector pertaining t
the cube face located at the positionr and orthogonal to the
~mn! plane. By dividing the line integral in pieces, accordin
to the branches belonging to the loop, we may wr
r fA(r )•dl5(b:es*bA(r )•dl, where b:es are the branches
belonging to the boundary off. For b5$r ,m̂% the term
*bA(r )•dl can in turn be obtained from the integral

E
0

a

Am~r !•dl5
m0

4p (
r 8

E
0

a I m~r 8!dlm~r 8!

dl ~r !,l ~r 8!
•dlm~r !,

wheredl (r ),l (r 8) is the distance between the componentslm(r )
and lm(r 8). By defining a partial mutual inductance, as
Ref. 11,

M ~m!
p ~r ,r 8!5

m0

4p E
0

aE
0

a dlm~r !•dlm~r 8!

dl ~r !,l ~r 8!
, ~5!

the integral can be written as *0
aAm(r )

5( r 8M (m)
p (r,r 8)I m(r 8). In this case, the magnetic flux ca

be calculated by completing the circulation and by add
the external magnetic field contribution, as follows:

f~mn!~r !5(
r8

$M ~m!
p ~r ,r 8!I ~m!~r 8!2M ~m!

p ~r1an̂,r 8!

3I ~m!~r 8!1M ~n!
p ~r ,r 8!I ~n!~r 8!2M ~n!

p ~r1am̂,r 8!

3I ~n!~r 8!%1m0H•S~mn!~r !. ~6!

The M (m)
p (r,r 8) coefficients are solved analytically for one

dimensional wires~cf. Appendix A for details!. Equations
~6! can be expressed in matrix from asF̃5PMI b , where
F̃5f (mn)(r )2m0H•S(mn)(r ) contains both the magneti
flux and the external field contribution,P is the matrix de-
noting the summation,M contains the correspondin
Mm

p (r,r 8) terms, andI b is a column vector whose compo
nents are the branch currents.

Equations~1!–~6! form a set of nonlinear ordinary differ
ential equations that applies generally to inductive 3D JJN
The boundary of a specific network is obtained by requir
that the currents outside the network are zero.

We use the fourth-order Runge-Kutta method~RK4! to
solve the above set of equations. In order to obtain the m
netic flux and the current distribution in the network, f
each step of the RK4 we start by calculating the fluxes fr
the phase differences, Eq.~3!, and then solve the branc
currents from the fluxes by using Eq.~6!. Because the matrix
@PM# is rank-deficient, the inverse problem will be discuss
in more detail in Appendix B. Finally, we substitute th
branch currents in Eq.~2!; in this way, Eq.~2! becomes a se
of coupled nonlinear differential equations for the phase d
ferenceswj’s.

Since H is considered to be homogeneously distribut
over the network knowing the magnetic-flux distribution
the loops, we can calculate the discretized magnetizat
i.e., the magnetization for each loop to obtain

M j~r !5
1

m0S~mn!~r !
f~mn!~r !2Hj , ~7!

wherej'(m,n). Finally, the magnetization is averaged as
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m0S~mn!~r !
f~mn!~r !2Hj , ~8!

wherenf is the number of the loops.

III. RESULTS

We study here the magnetic response of zero-field-coo
~ZFC! networks of size 83838 by means of the procedur
set forth in the preceding section. The external magnetic fi
is increased with small increments in order to simulate re
istic magnetic-field sweeps. For computational purpose
normalized external fluxce52pm0uHuuSu/f0 is defined. Af-
ter each increase ofDce50.1p, the system is allowed to
relax close to its stationary solution. If not otherwise stat
the relaxation timeDt after each increase ofDce is Dt
5100l /R, where l is a partial self inductance of a branc
and l /R is the natural time unit of the JJN~typically of size
10210– 10212s!. Finally, the calculated magnetic flux an
current distributions are recorded before the external fiel
again increased byDce .

In the following, we shall examine flux penetratio
mainly in the loops parallel to thexy plane. These loops form
layers characterized by the ratiok5r z /a, which defines the
orientation and the position of the layer in space. The dir
tions of the external magnetic field are chosen in such a
that the flux distribution in thexz and yz layers can be de
duced from that in thexy layers. Thus we show the flu
distribution for the~xy! faces and cut off the other faces fo
simplicity. For the clarity the spacing of thexy layers in the
figures is larger than the spacing in the network. The val
representing the magnetic fluxes in phasesc52pf/f0 are
given on the gray-color scale sketched at the bottom of
figures.

Like one- and two-dimensional JJN’s~cf. Refs. 12–14!,
the 3D JJN can be in either a reversible or an irrevers
state, and the irreversible state can again be either a net
vortex or a network critical state, depending on the superc
ducting quantum interference device~SQUID! parameter of
the system. These states resemble their analogous partn
type-II superconductors. The network critical and vort
states will be discussed in the following, in the context of t
3D JJN.

At low values of the external magnetic field, no magne
flux penetrates irreversibly into the ZFC system, and
magnetic flux decays exponentially from the edge to the c
ter of network, and therefore we call such a state a revers
state. As the magnetic flux begins to penetrate, the param
b52p l I J /f0 defines the kind of state that is formed in th
network. Due to analogy we refer to the parameterb as a
SQUID parameter, although it is defined for a branch not
a loop. With highb values a network critical state is forme
in the system, whereas at lowb values a network vortex stat
occurs.

A. Network critical state

Let us now study the magnetic-flux distribution in the
3838 network for the valueb52p and the field direction
Ĥ5(0,0,1). In Fig. 2, magnetic-flux distributions are show
for the increasing external field valuesce53p ~a!, ce
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56p ~b!, ce510p ~c!; finally, the remanent magnetic-flu
distribution is presented in~d!. When the first threshold field
is exceeded, the magnetic flux begins to penetrate the top
bottom layers, as shown in Fig. 2~a!. After a phase-slip pro-
cess, the magnetic flux has penetrated into the system in
form of Josephson network vortices~JNV!, which are seen as
the dark-gray spots in the layersk50 andk58 in Fig. 2~a!.
In this case@Ĥ5(0,0,1),ce53p, andb52p# eight JNV’s
penetrate the system, Fig. 2~a!, two from each perimetrica
side, and they are localized almost entirely in one loop w
the neighboring loops only slightly affected by the penetr
ing flux. The parameter valueb52p is high enough to al-
low for the network critical state, and in this case the ma
netic flux is indeed trapped in the loops next to the edge
the network. Three dimensionality here affects the shield
properties of the system. Indeed, considerably less magn
flux penetrates the center layersk53 – 5 than the top and
bottom layers in Fig. 2~a!. As the external field is further
increased, more flux penetrates into the network with arro
like flux fronts as shown in Figs. 2~b! and ~c!. Taking one
layer, we note that resembling flux fronts occurs also in
JJN’s ~Ref. 15! and in rectangular superconductors.16,17

Due to magnetic coupling, the screening effects are
strongest in the center layers, resulting in the bending of
JNV’s. Even atce510p, which is enough to produce a fu
penetration in thek50 andk58 layers in Fig. 2~c!, a flux

FIG. 2. Magnetic-flux distributions in 83838 network forb
52p, Ĥ5(0,0,1). ~a! ce53p, ~b! ce56p, ~c! ce510p, and~d!
remanent magnetic-flux distribution,ce50.
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9714 PRB 61A. TUOHIMAA et al.
free region exists in the center of the layersk51 – 7. Such
bending has been found also in type-II superconductors
finite thickness by E. H. Brandt, by means of a theoreti
critical state approach.18

After the maximum valuece515p is obtained, thece is
decreased, and the magnetic flux begins to flow outw
from the middle of the side faces. A further decrease ince
results in further magnetic flux flowing out from the sid
faces, in accordance with the critical state model.19 Finally,
at ce50, the remanent flux is pinned into the network,
shown in Fig. 2~d!, with most of it pinned in the cente
layers. The remanent magnetic-flux distribution in a sin
layer resembles that obtained in a 2D JJN with a comp
mutual inductive matrix.15

Let us now consider the field directionĤ
5(0,1/&,1/&). We take a snapshot of an 83838 network
with b52p for the field valuesce52p, 3p, 6p, and fi-
nally, for the remanent magnetic-flux distribution,ce50, in
Figs. 3~a!–~d!, respectively. Atce52p ~a!, some junctions
in the network have undergone a phase-slip process.
magnetic-field direction defines the places where the m
netic flux enters the JJN. In the case ofĤ5(0,1/&,1/&),
these areas lie on the sides (nx , j ,0) and (0,j ,nz), with j
50¯7, of thexy layersk50 andk5nz , respectively. The
sides form a kind of outmost rim for the external flux. O
these edges the shielding currents in thexy andyz layers with

FIG. 3. Magnetic-flux distributions in 83838 network forb
52p, Ĥ5(0,1/&,1/&). ~a! ce52p, ~b! ce53p, ~c! ce56p,
and ~d! remanent magnetic-flux distribution,ce50.
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a common branch flow in the same direction, and the ma
mum Josephson current is first exceeded in junctions loc
on these sides, whereas on the opposite edges the scre
currents are opposite and cancel each other. For the ca
Fig. 2~a!, two JNV’s penetrated the network symmetrical
from each side, whereas here the penetration occurs
through two edges.

As for the directionĤ5(0,0,1) @Figs. 2~b! and ~c!#, also
in Ĥ5(0,1/&,1/&) an increase ince causes the magneti
flux to penetrate the network with an arrowlike distributio
@Figs. 3~b! and ~c!#. The entering vortices have their mag
netic moment parallel to the external field, which can be s
by comparing the Figs. 4 and 3~b!. In Fig. 4, the magnetic
flux distribution is shown forxz layers for the case abov
with ce53p. Evidently, the location of the dark-gray area
shifts as one goes from the bottomxy layer denoted byk
50 to the nextxy layer with k51 @Fig. 3~b!#. Similar flux
distribution is also present inxz layers. The shielding of the
inner cells of the network, lying along lines parallel to th
applied magnetic field, is obvious in this case, for only lit
magnetic flux is present in the centers of the middle lay
@Figs. 3~b! and ~c!#. Let us, finally, look at the remanen
magnetic-flux distribution, Fig. 3~d!. After the field is swept
back to zero from its maximumce515p, the magnetic flux
leaves the sides where the penetration started. A conside
amount of flux, however, is trapped in the center of the n
work.

B. Network vortex state

The number of loops over which a single JNV sprea
depends on the SQUID parameter. This can be deduce
comparing Figs. 2 and 5. In Fig. 5, magnetic-flux distributi
is shown for the 83838 network withb51 for the external
flux ce50.7p ~a!, and the remanent magnetic-flux distrib
tion ce50 ~b!, and withb50.1 for external fluxce50.4p
~c!, and the remanent magnetic-flux distributionce50, ~b!,
respectively. The direction of the external field was chos
to be Ĥ5(0,0,1) to allow comparison with Fig. 2.

Because at valuesb50.1 and 1 one mesh can trap only
small amount of magnetic flux, the JNV overlaps seve
loops with the overlap larger forb50.1 than forb51. Con-
sequently, in both cases the flux is distributed over a la
area. In fact, in the case ofb50.1, the magnetic flux is more
equally distributed over one layer of the JJN. In addition,

FIG. 4. Magnetic-flux distributions inxz layers, in 83838 net-
work for b52p, Ĥ5(0,1/&,1/&), andce53p.
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field values just abovec th , the lower threshold field of the
network, the penetrated JNV’s are not located in the corn
but at the center of the sides. This vortex distribution
sembles that reported in two-dimensional networks by Ch
Moreno, and Hernando.20 The first threshold field is found to
be in between 0.3p,c th,0.4p for b50.1, and 0.6p,c th

,0.7p for b51. Finally, forĤ5(0,0,1), andb50.1 and 1,
the magnetic flux is almost equally distributed in adjac
layers. Furthermore, no clear signs of the network criti
state is found in the remanent flux distribution forb51 and
b50.1, @Figs. 5~b! and ~d!#; instead, the spacing of th
trapped JNV’s clearly depends on theb value. Seemingly a
network vortex state prevails.

For a detailed look at the transition between the netw
critical and vortex state, we present the magnetic-flux dis
bution profiles of 83838 network atk55, i 55, and j
5@0¯7# in Fig. 6 for b values of 2p, 1, and 0.1 in~a!, ~b!,
and ~c!, respectively. The corresponding increasingce val-
ues are added to both ends; hence the indexj runs from j
50,1,2,...,9. We notice that forb52p @Fig. 6~a!#, the
magnetic-flux distribution is a piecewise continuous cu
with a nonzero average gradient. This is analogous to w
has been found in 1D and 2D JJN’s.14,12 Because the flux
profiles display behavior reminiscent of the Bean critic
state model, we can argue that, besides local deviation
network critical state has been established in the JJN.

FIG. 5. Magnetic-flux distributions in 83838 network forĤ
5(0,0,1) withb51 for ~a! ce50.7p, ~b! remanent magnetic-flux
distribution, ce50, and withb50.1 for ~c! ce50.4p, ~d! rema-
nent magnetic-flux distribution,ce50.
rs
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thermore, at full flux penetration the profiles periodically r
peat the same shapes of local deviations as a function ofce ,
the period beingDce54p.

In the caseb50.1 @Fig. 6~b!#, the system shows an ave
age gradient close to zero andc oscillates as a function ofj
so that the network vortex state prevails. In the network v
tex state, the oscillating flux component is the only comp
nent present. Here the vortex trapping is due only to
current flowing at the edges, i.e., the trapping is caused
the surface barrier. However, withb51, the network might
have a finite average gradient, as also supported by ma
tization studies~Sec. III C!. We note, that in 83838 net-
works the transition from the network vortex state to netwo
critical state is smooth, such that both a network vortex s
and a network critical state behavior may be present depe
ing on external flux value atb'1. At a growing b, the
vortex state is less and less likely to occur and finally dis
pears altogether.

C. Magnetization of the network

Finally, we analyze the magnetic moment densitym of
the 83838 network defined by Eq.~8!. In Fig. 7, the mag-

FIG. 6. Magnetic-flux profiles of 83838 network as a function
of j for valuesk55 and i 55, and for Ĥ5(0,0,1). Herece in-
creases from zero and usedb values are~a! b52p, ~b! b51, and
~c! b50.1.
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netic moment density of the system is plotted as a function
the external field for valuesb52p ~a! and~b!, b51 ~c!, and
b50.1 ~d!, and for the field directionsĤ5(0,0,1) ~a!, ~c! ~d!
andĤ5(0,1/&,1/&) ~b!. Note thatm is scaled by a factor
2pm0S/f0 such thatm* 5i2pm0Sm/f0i . With the highest
SQUID parameter value,b52p, the system evinces stron
magnetization~a! and~b!, and, except for a slight ripple, th
magnetization curve resembles that in Bean’s critical s
model.19 The maximum magnetization of the sample
weaker for the field directionĤ5(0,1/&,1/&) than for Ĥ
5(0,0,1). The periodicity of the magnetization as a functi
of the external magnetic flux also changes with a chang
field direction, as seen by comparing the curves~a! where
Dce54p and ~b! whereDce52&p. Generally, the peri-
odicity differs from that of a 1D or 2D JJN with the differ
ence caused by the mutual inductive coupling of branches
shown in Fig. 7~a!, where the period isDce54p. At b
51, both the oscillation ofm* as a function of the externa
field and its maximum absolute value are enhanced, the
riodicity now beingDce52p, as shown in Fig. 7~a!, and
thus similar to that of a 2D JJN.21 At about theseb values,
the 3D JJN undergoes a smooth transition between the
work critical and the vortex state. For example, neglect
the ripple a nonzero magnetization component prevails, in
cating that a network withb51 still has magnetic flux
pinned inside the network. Thus, atb51, the network has
neither a clear network vortex state nor a network criti
state but is in a regime of transition. Whenb50.1, the
magnetic-moment density of the network is small, indicat
weak screening effects. Maximum magnetization occurs
Dce52p periods, and oscillation, caused by surface bar
pinning, is then clearly present.

IV. DISCUSSION

For SQUID parameters sufficiently high we found that t
network screens its inner part from external magnetic fl

FIG. 7. Scaled magnetic moment density of 83838 network as
a function ofce52pfe(r )/f0 for three cases:b52p ~a! and~b!,
b51 ~c!, andb50.1 ~d!. Field directionĤ5(0,0,1) for~a! ~b! ~c!

andĤ5(0,1/&,1/&) for ~b!.
f
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This behavior results in a network critical state. At increa
ing fields, clear flux fronts are present and the magnetic-fl
penetration starts in the middle of the side faces. Compa
the magnetic-flux distribution and the magnetic hystere
curves of the 3D JJN with the experiments on Bi-2223 po
crystalline samples,22–25 we found that the high-b simula-
tions of the 3D JJN give results which qualitatively agr
with the experimental results. The above suggests that a
JJN with highb is a valid model to describe qualitatively th
low-field magnetic properties of a granular sample.

A quantitative comparison between calculations and
periments is difficult because real polycrystalline samp
consist of myriads of grains with varying intergranular pro
erties; therefore the results in this paper are tentative,
further studies are required in for more specific results on
magnetic response of a 3D JJN and on the applicability
these models for the study of the low magnetic-field behav
of granular superconductors. More detailed studies on a
JJN as a model for the intergranular magnetic properties
high-temperature superconductor bulks would have to
clude additional features such as structural disorder as
as coupling inhomogeneities.

V. CONCLUSIONS

We expanded existing inductive JJN models to 3D JJ
made of cubic subnetworks. To show the main characte
tics of the magnetic behavior of small networks, we p
sented the magnetic-flux distribution in the 83838 net-
works for cycling external magnetic fields with fixed fie
directions.

We found that the networks screen their inner parts fr
external magnetic flux, provided that the SQUID parame
is sufficiently high, whereas weak shielding is detected
low SQUID parameter values. For external magnetic fie
higher than the lower threshold field of the network, t
magnetic flux enters into the system in the form of Joseph
network vortices whose magnetic moments have favora
the same direction as the external magnetic field. These
tices tend to penetrate deeper into the network as the exte
magnetic field is increased. The behavior is to some ex
analogous to the penetration of magnetic flux into type
superconductors.26

Finally, even though further studies are required to est
lish a quantitative agreement between the magnetic resp
of 3D JJN’s and granular superconductors, we believe
these model systems are natural candidates for the det
study low-field magnetic-flux penetration in polycrystallin
superconducting samples.

We thank Professor L. Kettunen at Tampere University
Technology, and Professor S. Pace at University of Sale
for helpful discussions. A.T. also wishes to express his gr
tude to Finnish Academy of Science and Letters for supp

APPENDIX A: INDUCTANCE CALCULATIONS

Adopting a 3D~Josephson-junction! network as a mode
to study the electromagnetic properties of a real granu
system, we should bear in mind that the currents depicte
the circuit in Fig. 1 describe only the currents which effe
tively flow into the junctions. In this way the current distr
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bution in Fig. 1 does not reproduce the actual current dis
bution of the physical system. However, a comple
treatment of the physical system is rather involved since
shielding currents circulating at the grain surfaces are
easy to calculate and only a portion of the superficial curr
density flows through the junctions. Therefore we shall c
sider only the simple case of the network shown in Fig.

Since the loop current method proved ineffective with t
3D network, we developed, in Sec. II and Appendix B,
method using branch currents. Mutual inductive coupl
was then taken into account by introducing a partial mut
inductance, Eq.~5!. Here we consider the calculation of th
inductances. In the beginning, we note that all the branc
in the network in Fig. 1 are either perpendicular or paralle
each other. Because in the Neuman formula27 the perpen-
dicular components vanish, in the following, it is enough
deal with two parallel current blocks at a time. Let us co
sider two one-dimensional wires 1 and 2 of lengtha placed
in the m direction and being a distance ofd~n,h! apart from
each other on~n, h! plane with centersdm apart inm direc-
tion. We obtain

mpar5
m0

4p E
0

aE
am

a1dm dl1dl2

Adn,h
2 1~ l 12 l 2!2

, ~A1!

which is solved analytically.
However, if the branches (m)(r ) and (m)(r 8) refer to the

same location (r5r 8), the integrand in the integral, whic
gives the coefficientM ~m!

P (r,r 8), is singular. To solve this
problem we may first consider the self-inductances of a c
rent loop. Each face of the cube can be thought to conta
square current loop made of thin cylindrical wire of diame
2r and the side lengtha. The self-inductance of the whol
loop is then given by15,27

I loop5
m0a

4p S 218S ln
2a

r ~11& !
1&22D D . ~A2!

Each loop can be divided into four branches, each wit
partial self-inductancel and a negative mutual contributio
from the opposite branchmpar such thatL loop/45 l 2mpar.
Therefore the partial self-inductance for the branches can
obtained from

FIG. 8. ~a! Choice of tree of facets made for cubic network a
~b! its co-tree.
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l 5L loop/41
m0

4p
@2a22A2a212a sinh21~1!#, ~A3!

where the second part on the right is to eliminate the mu
inductive effect of the opposite branch in the loop. Fora
510mm and 2r 50.1mm, l is 9.097310212H. Using the
method above, we calculated the partial mutual inductanc
among all the branches and built up a matrixM which was
then used for 3D JJN, as described in Sec. II.

APPENDIX B: UNIQUE SOLUTION
OF THE FLUX CURRENT LINKAGE

As stated previously, Eq.~6!, which links the magnetic
flux and branch currents, is underdetermined. Indeed,
magnetic fluxF̃ has linearly dependent components. In th
case the linear dependence arises from the Maxwell equa
¹•B50, which implies that over each closed surfaceA en-
closing a volumeV we must have

E
A
~B•n!dA50, ~B1!

wheren is the normal component of the differential surfa
dA. Equation~B1! means that the magnetic flux coming in
the volumeV must be equal to the outflowing flux. Cons
quently, each cube has one face whose magnetic flux ca
described in terms of the fluxes across the other faces. Le
now turn to the currents. Unlike with the loop curre
method, Eqs.~1!–~6! do not imply the Kirchoff’s current rule
to hold for the branch currents. Instead, it has to be explic
required. According to the rule one of the branch curre
can be expressed in terms of the other currents at each n

To make the solutions unique we may proceed as follo
using simple network theory:28–30 At first, we can remove
the linearly dependent fluxes from the flux vectorF̃. The
fluxes through the faces can be calculated by introducin
tree and a co-tree in the cubic network. A facet tree is
maximal set of facets~5cubic faces! without any cycles,
where the cycle is a set of facets without a boundary.31 Such
a tree can be made, e.g., in the way shown in Fig. 8.

Now each cofacet~i.e., co-tree facet! closes a surface with
some volume within. Therefore a flux through any facet
the co-tree can be expressed in terms of the facets on the
belonging to the path of the co-facet in question. Hence

FIG. 9. ~a! Choice of tree of edges made for cubic network a
~b! its co-tree.
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early dependent fluxes can be eliminated by omitting
fluxes belonging to the co-tree, by removing the correspo
ing components fromF̃ and the corresponding rows fromP.

Since the branch currents have to obey Kirchhoff’s c
rent rule, we introduce a tree and co-tree on the cubic ed
Fig. 9. All the branch currents, satisfying the current ru
can be computed by solving the branch currents on the e
belonging to the co-tree. In matrix form we write

I b5FQI G I ct, ~B2!

where a row ofQ gives a branch current belonging to th
E

t

e

e
d-

-
s,

,
es

tree as a function of branch currents belonging to the co-tr
I is identity matrix, andI ct is the currents on the co-tree. Th
number of the edges on the co-tree is the same as the am
of the facets on the facet tree.

Finally, the inverse problem can be written as

F̃5FPMFQI G G I ct, ~B3!

where the matrix in outer brackets is invertible. Havin
solvedI ct , we can finally obtain the branch currents from E
~B2!.
v
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