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Magnetic flux distribution in a three-dimensional inductive network of Josephson junctions
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The magnetic response of three-dimensional Josephson junction networks to constant or slowly varying
external magnetic fields is studied. General equations are written for complex networks nmegleroentary
cubic cells, each cell containing 12 resistively shunted ideal Josephson junctions. The magnetic-flux distribu-
tion in the network is calculated numerically as a function of the external magnetic field for different values of
superconducting quantum interference device parameter, network size, and external magnetic-field direction.
The magnetic-flux distribution in the network is graphically shown, first for increasing and then for decreasing
values of the external magnetic flux.

I. INTRODUCTION rents, which in turn can be uniquely solved from magnetic
fluxes. We present a few chosen examples with the aim of
Josephson-junction networkgJJN'S have been exten- finding the main characteristics of the magnetic behavior of
sively studied in the last few years. The electromagnetidnductive 3D JIN’s. The paper is organized as follows: The
properties of these systems have become of interest after tfigodel is presented in Sec. Il and the main results are dis-
discovery of high-temperature superconductivity. The intercussed in Sec. Ill. Conclusions are drawn in the last section
est in JIN's derives both from their potential technologicalVith a special emphasis on the main characteristics of 3D
application as superconducting devitesd from their use Nnetworks of inductively coupled Josephson-junction net-
as model systems in the study of electromagnetic propertie40rks.
of high-T¢ granular superconductofs.
It has been proposed that three-dimensioi3) JIN's
can be used as vectorial magnetic-field sendsrsthat they
might open new perspectives in the realm of superconduct- The JIN model under study consists of elementary cubic
ing devices. Moreover, 3D JIN's may be used as a model teubnetworks, which we shall call “cubes.” One of the cubes
study the electromagnetic behavior of weakly coupled granuis sketched in the bottom right corner of the JIJN shown in
lar superconductors. The networks can provide a picture ofFig. 1(a). We denote the number of cubes in they, andz
the magnetic-flux distribution in the intergranular regions ofdirection with n,, ny, and n,, respectively, so than
these materials, which is more realistic than that provided by=n,n,n, is the total number of cubes. In the following, the
one or two dimensional JIN’s. Indeed, the 3D JIN may opestructure of the network is identified by using the notation
a new viewpoint into the three-dimensional magnetization oh,xn,xn,. Each cube has 12 Josephson junctions, one on
the superconducting bulk materials and help understand theach edge, as shown in Fig(bL Between two adjacent
bulk effects. Several research groups have already studieslibes there are four shared junctions and one face with a
the 3D JIN’s in the limit of negligible magnetic enefly.  magnetic flux in common. Let now the vectordefine a
However, regions may exist on thd-T plane where this
limit does not apply as, for example, in the case of granular (b) ©
superconductors withum-size intergranular defects in the z4
low-field and low-temperature limit. Here the magnetic en- 7
ergy of the induced currents should be taken into account.
Equations for the inductive 3D JIN were originally de- ]
rived by Nakajima and Sawadawe have recently studied
the static magnetic response of an elementary cubic network ™ ’
and derived analytic expressions for the lower threshold field - 1 sy
of linearly aligned cubé$ by using circulating loop currents YT /‘)nx
with inductances. However, in the 3D JIN's the loop currents ¥x
become ineffective, since they are no more unique. T
In this paper, a simple JJN model of the elementary tube FiG. 1. Circuital inductive three-dimensional Josephson-
is expanded to more complex inductive 3D JIN's, consistingunction network modela) Network made ofi=n,n,n, cubes (b)
of n elementary cubes. The magnetic-flux distribution andglementary cubic Josephson-junction network with current vari-
the magnetic-moment density of the system are studied. Thables.(c) Box containing inductance and ideal Josephson junction
model is based on the inductive effects of the branch curdJ, shunted with resistané

Il. MODEL
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point in R® and the vectors/;, v,, andvs form a right-  branch currents, an§,,)(r) is the area vector pertaining to
handed basis ift3. A cell is defined as an object consisting the cube face located at the positiomnd orthogonal to the
of a pointr and of the three unitary vectofs,,v,,v3} so  (uv) plane. By dividing the line integral in pieces, according
that any point of the cell is given by+aj;v;+a,v, to the branches belonging to the loop, we may write
+ a3vy, where G<aq,a,,a3<a, with a being the lattice $:A(r)-dI==,..s[pA(r)-dl, where b:es are the branches
constant. The cell is denoted @Ulvzvs(r)z{r,vl,vz,vg} belonging to the boundary of. For b={r,u} the term
with the orientation given by the positional order of JbA(r)-dl canin turn be obtained from the integral
{v1,v,,v3}. Correspondingly, a face can be represented by

the collection of the vectork, , (r)={r,v;,v,}. Choosing a JaAH(r)-dI= ﬂE fa L (r')dl,(r') di(r),
Cartesian coordinate system, one can identify the faces by 0 am’ 7 Jo A
the vectorr and by the indices 4v)=(xy), (zX, or (y2.  whered,, -, is the distance between the componep(s)

Thus, as in Ref. 9, we write the magnetic flux across the facgq |M(rr)_ By defining a partial mutual inductance, as in
{rmv} as ¢,,(r). Likewise, I ,(r) stands for the branch Ref 11,

current through a junctiofir, u}.

We assume that all junctions are identical and over- wo (2 (adl,(r)-dl,(r")
damped. The resistively shunted junctioRSJ) model is M{%(H’Fﬂf J B — )
. . L . . 0 I(r),I(r")
used to describe their behavior: ideal Josephson junctions are
characterized by a phase difference and the maximum Jgne integral can be written as ngM(r)

sephson current;, and they are shunted by a resistaftce :Er’M? y(r)1,(r"). In this case, the magnetic flux can
[Fig. 1(c)]. The gauge-invariant phase difference of the junce calculated by completing the circulation and by adding
tion lying along the¢ (X, §, or 2) direction in the cell at the the external magnetic field contribution, as follows:
positionr is named byp,(r). Now, by letting the nonlinear

Josephson Operat@.lr qs(’l“/)(r):z {MFM)(r,rr)I(M)(rI)_MFM)(r_'_a'i/,rr)
r’

¢o d .
OJ('):mE(')HJS'n(')’ (1) X1 (r)+ME(r,r )y (r) = ME, (r+ag,r’)
act upon the phase differengg(r) and by setting the result XL () poH - S (1). (6)
equal to the current flowing through the junction, we can . _
write the equations of motion The Mf#)(r,r ") coefficients are solved analytically for one-
dimensional wires(cf. Appendix A for details. Equations
Oyl eer)]=1gr). (2)  (6) can be expressed in matrix from ds=PMIy, where

. . _ D= h(,,)(r) —moH- §,,)(r) contains both the magnetic
The relations between the normalized flux variab¥®s g, and’the external field contributio® is the matrix de-

= ¢/ $o and the superconducting phase differences are olyqiing the summation,M contains the corresponding
tained from the flux quantization condition for each closed / .
q Mz(r,r ) terms, andl, is a column vector whose compo-

face in the network: nents are the branch currents.
27V (1) (1) = 27D (1) + @, (1 +af1) I_Equations(l)—(6) form a set of nonlinear ordinary differ-’
ential equations that applies generally to inductive 3D JIN's.
—@ (N =@y (r+av)+e,r), 3 The boundary of a specific network is obtained by requiring
, . - that the currents outside the network are zero.
where thep,,,(r) S aré Integer poefﬁments. . We use the fourth-order Runge-Kutta meth@K4) to
The flux quantization equations can beAwrltten for all theg)ye the above set of equations. In order to obtain the mag-
faces by introducing a translation operafdy, where the netic flux and the current distribution in the network, for
index # gives the direction along which the translation is each step of the RK4 we start by calculating the fluxes from
performed. The operator acts directly upon the position vecthe phase differences, E3), and then solve the branch
tor r. For example, when applied to the phase differences, igurrents from the fluxes by using E@). Because the matrix

acts in the following way: [PM] is rank-deficient, the inverse problem will be discussed
N . in more detail in Appendix B. Finally, we substitute the
T,0:r)=¢ r+an). (4)  branch currents in Eq2); in this way, Eq.(2) becomes a set
o - of coupled nonlinear differential equations for the phase dif-
Similarly T,, acts upon the fluxesV ,,(r), the currents ferencesp,’s.

l(15(r), and the flux numberp,,)(r), as in Eq.(4). Since H is considered to be homogeneously distributed

If the applied magnetic field strength is assumed 0 be  gyer the network knowing the magnetic-flux distribution in
homogeneously distributed over the network, the equatiogye |oops, we can calculate the discretized magnetization,

B=uo(M+H) defines linkage between the magnetic-fluxi_e_, the magnetization for each loop to obtain
densityB and the magnetizatioll. The equation relates the

branch currents and the fluxes as follows: The fluggs(r)

can be calculated from the line integrapA(r)-dl M(r)= S—(r)
+ moH- S, (r), where the line integral is taken around the HOun)
face {r, v}, A(r) is the magnetic vector potential due to whereél (u,v). Finally, the magnetization is averaged as

¢(,U,V)(r)_H§! (7)
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lll. RESULTS T e
We study here the magnetic response of zero-field-coolec - _ B
(ZFC) networks of size & 8 X8 by means of the procedure e \}
set forth in the preceding section. The external magnetic field e \)’
is increased with small increments in order to simulate real- — = —_—
istic magnetic-field sweeps. For computational purposes, ¢ e —— T
normalized external flux,= 2 uo|H|| S/ ¢ is defined. Af- e — T e—
ter each increase ok y,=0.1m, the system is allowed to L
relax close to its stationary solution. If not otherwise stated, 27 (zy) (7)/ b0 27 (ay) (7)/ S0
the relaxation timeAt after each increase i, is At (©) (d)
=100/R, wherel is a partial self inductance of a branch, ) )
and|/R is the natural time unit of the JJMypically of size —— e
10 °-10 *29). Finally, the calculated magnetic flux and ““*_—_:> —cng———
current distributions are recorded before the external field is F \——'b“ o
again increased by ¢ . — e
In the following, we shall examine flux penetration *# e —— ———
mainly in the loops parallel to they plane. These loops form Yy e L ——
layers characterized by the rate-r,/a, which defines the z T o ——
orientation and the position of the layer in space. The direc- g o ———
tions of the external magnetic field are chosen in such a way e e —

that the flux distribution in thexz andyz layers can be de-
duced from that in thexy layers. Thus we show the flux o0 8 16 24 8 0 6 12 18 24
distribution for the(xy) faces and cut off the other faces for 27 (oy)(7) /b0 27 (2y)(7)/ b0
simplicity. For the clarity the spacing of they layers in the

figures is larger than the spacing in the network. The values g\ 2. Magnetic-flux distributions in 88x 8 network for 3
representing the magnetic fluxes in phages2m /¢ are  _5_ {1 (0,0.1).(a) =3, (b) he=6, (C) =10, and(d)
?Nen on the gray-color scale sketched at the bottom of the,,anent magnetic-flux distributiori,=0.
igures.

Like one- and two-dimensional JIN(sf. Refs. 12—14 i )
the 3D JIN can be in either a reversible or an irreversible=67 (D), =10 (c); finally, the remanent magnetic-flux
state, and the irreversible state can again be either a netwoflstribution is presented id). When the first threshold field
vortex or a network critical state, depending on the supercons exceeded, the magnetic flux begins to penetrate the top and
ducting quantum interference devi€BQUID) parameter of ~bottom layers, as shown in Fig(a. After a phase-slip pro-
the system. These states resemble their analogous partnersSss, the magnetic flux has penetrated into the system in the
type-ll superconductors. The network critical and vortexform of Josephson network vortice¥NV), which are seen as
states will be discussed in the following, in the context of thethe dark-gray spots in the layeks=0 andk=8 in Fig. Za).
3D JJIN. In this casgH=(0,0,1), =3, andB=27] eight INV’s

At low values of the external magnetic field, no magneticpenetrate the system, Fig(a2 two from each perimetrical
flux penetrates irreversibly into the ZFC system, and theside, and they are localized almost entirely in one loop with
magnetic flux decays exponentially from the edge to the centhe neighboring loops only slightly affected by the penetrat-
ter of network, and therefore we call such a state a reversiblng flux. The parameter valug= 2 is high enough to al-
state. As the magnetic flux begins to penetrate, the paramett@w for the network critical state, and in this case the mag-
B=2mll;/ ¢, defines the kind of state that is formed in the netic flux is indeed trapped in the loops next to the edge of
network. Due to analogy we refer to the paramegeas a  the network. Three dimensionality here affects the shielding
SQUID parameter, although it is defined for a branch not foproperties of the system. Indeed, considerably less magnetic
a loop. With highg values a network critical state is formed flux penetrates the center layeks-3-5 than the top and
in the system, whereas at Iggwalues a network vortex state bottom layers in Fig. @). As the external field is further
occurs. increased, more flux penetrates into the network with arrow-
like flux fronts as shown in Figs.(B) and (c). Taking one
layer, we note that resembling flux fronts occurs also in 2D
JIN's(Ref. 15 and in rectangular superconductd?s’

Let us now study the magnetic-flux distribution in the 8  Due to magnetic coupling, the screening effects are the
X 8x 8 network for the valugg=2 and the field direction  strongest in the center layers, resulting in the bending of the
H=(0,0,1). In Fig. 2, magnetic-flux distributions are shownJNV’s. Even aty,= 10w, which is enough to produce a full
for the increasing external field valueg.,=37 (a), .  penetration in th&k=0 andk=8 layers in Fig. £), a flux

A. Network critical state
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g 4 0B 2 AW 4 FIG. 4. Magnetic-flux distributions izlayers, in 8<8x 8 net-
27 (zy) () /b0 27 (zy) (F)/ b0 work for =21, H=(0,1#/2,1#/2), and = 3.
d
© N @ a common branch flow in the same direction, and the maxi-
—E—— e mum Josephson current is first exceeded in junctions located
| e E— on these sides, whereas on the opposite edges the screening
——— o —— currents are opposite and cancel each other. For the case in
. T - - — Fig. 2(a), two JNV’s penetrated the network symmetrically
z|H — T e from each side, whereas here the penetration occurs only
v — — —— through two edges.
o ———— R As for the directionH=(0,0,1) [Figs. 2b) and(c)], also
— ;_g.._ . in H=(0,1#2,1A2) an increase inj, causes the magnetic
I .;’” i flux to penetrate the network with an arrowlike distribution
- [Figs. 3b) and (c)]. The entering vortices have their mag-
o R TR netic moment parallel to the external field, which can be seen
27 (zy) (F)/ b0 27 (zy)(F)/ 0 by comparing the Figs. 4 andl®. In Fig. 4, the magnetic

flux distribution is shown forxz layers for the case above

FIG. 3. Magnetic-flux distributions in 88x 8 network forg ~ WIth e=3. Evidently, the location of the dark-gray areas
=27, A=(0,1M2,1M3). (@ =21, (b) =37, (C) ho=6 shifts as one goes from the bottoxy layer denoted by
’ ) ’ . e 1 e 1 e ’

and(d) remanent magnetic-flux distributiogi,= 0. :_0 to the nextxy layer With_ k=1 [Fig. 3(b)]. Sim_ilar flux
distribution is also present ixz layers. The shielding of the

inner cells of the network, lying along lines parallel to the

free region exists in the center of the layérs 1-7. Such OEhpplied magnetic field, is obvious in this case, for only little

bending has been found also in type-Il superconductors
finite thickness by E. H. Brandt, by means of a theoretica Figs. 3b) and (c)]. Let us, finally, look at the remanent

critical state approacH. magnetic-flux distribution, Fig. (8l). After the field is swept
After the maximum value),= 15 is obtained, the/, is (i gnetic-flux distribution, Fig. (). 190 1S SWEP

d d d th = flux beai f ack to zero from its maximunk,= 157, the magnetic flux
ecreased, an the magnenc ux begins to flow oquar aves the sides where the penetration started. A considerable
from the middle of the side faces. A further decrease/in

; . . ., _amount of flux, however, is trapped in the center of the net-
results in further magnetic flux flowing out from the side

faces, in accordance with the critical state mddefinally, work.
at .=0, the remanent flux is pinned into the network, as
shown in Fig. 2d), with most of it pinned in the center
layers. The remanent magnetic-flux distribution in a single The number of loops over which a single JNV spreads
layer resembles that obtained in a 2D JIN with a completélepends on the SQUID parameter. This can be deduced by
mutual inductive matrix® R comparing Figs. 2 and 5. In Fig. 5, magnetic-flux distribution
Let us now consider the field directionH is shown for the & 8 X 8 network with@=1 for the external
=(0,1~72,1N2). We take a snapshot of arx@x 8 network  flux #.=0.7# (a), and the remanent magnetic-flux distribu-
with B=27 for the field valuesy.=2m, 3m, 6, and fi-  tion =0 (b), and with=0.1 for external fluxy=0.4a
nally, for the remanent magnetic-flux distributiof,=0, in (c), and the remanent magnetic-flux distributige=0, (b),
Figs. 3a)—(d), respectively. Aty,=2 (a), some junctions respectively. The direction of the external field was chosen
in the network have undergone a phase-slip process. The beH=(0,0,1) to allow comparison with Fig. 2.
magnetic-field direction defines the places where the mag- Because at valug8=0.1 and 1 one mesh can trap only a
netic flux enters the JIN. In the casetdt (0,1V2,1V2), small amount of magnetic flux, the JNV overlaps several
these areas lie on the sides,(j,0) and (0j,n,), with j loops with the overlap larger fg8=0.1 than for8=1. Con-
=0---7, of thexy layersk=0 andk=n,, respectively. The sequently, in both cases the flux is distributed over a large
sides form a kind of outmost rim for the external flux. On area. In fact, in the case ¢=0.1, the magnetic flux is more
these edges the shielding currents inxti@ndyzlayers with  equally distributed over one layer of the JIN. In addition, at

agnetic flux is present in the centers of the middle layers

B. Network vortex state
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FIG. 5. Magnetic-flux distributions in 88X 8 network forH
=(0,0,1) withg=1 for (a) ¥.=0.77, (b) remanent magnetic-flux
distribution, =0, and with3=0.1 for (c) )=0.4s, (d) rema- 0 o 4 6 8
nent magnetic-flux distributionj.=0. J

field values just abovey,, the lower threshold field of the ~ T'G- 6- Magnetic-flux profiles of 888 network as a function
ng for valuesk=5 andi=5, and forH=(0,0,1). Herey, in-

network, the penetrated JNV’s are not located in the corner
but at the center of the sides. This vortex distribution re-créases from zero and usgdialues arda) =2, (b) f=1, and
sembles that reported in two-dimensional networks by Chen(,c) p=0.1.
Moreno, and Hernand®.The first threshold field is found to thermore, at full flux penetration the profiles periodically re-
be in between 08< ¢,<0.4m for =0.1, and 0.&<¢y,  peat the same shapes of local deviations as a functign of
<0.77 for B=1. Finally, forH=(0,0,1), and3=0.1 and 1, the period being\ o=4.
the magnetic flux is almost equally distributed in adjacent In the casg8=0.1[Fig. 6b)], the system shows an aver-
layers. Furthermore, no clear signs of the network criticalage gradient close to zero agidoscillates as a function gf
state is found in the remanent flux distribution f&=1 and SO that the network vortex state prevails. In the network vor-
B=0.1, [Figs. §b) and (d)]; instead, the spacing of the tex state, the oscillating flux compongnt i_s the only compo-
trapped JNV's clearly depends on tBevalue. Seemingly a Nent present. Here the vortex trapping is due only to the
network vortex state prevails. current flowing at the edges, i.e., the trapping is caused by
For a detailed look at the transition between the networkhe surface barrier. However, wifg=1, the network might
critical and vortex state, we present the magnetic-flux distrihave a finite average gradient, as also supported by magne-

bution profiles of 8<8x8 network atk=5, i=5, andj tization studiesSec. IIIC. We note, that in &8X8 net-
=[0---7] in Fig. 6 for 8 values of 2r, 1, and 0.1 in@), (b), ~ Works the transition from the network vortex state to network

and (c), respectively. The corresponding increasingval-  cfitical state is smooth, such that both a network vortex state
ues are added to both ends; hence the irjdaxns fromj  @nd anetwork critical state behavior may be present depend-
=0,1,2,..,9. We notice that fog=2x [Fig. 6@], the Ing on external flux value aB~1. At a growing g, the
magnetic-flux distribution is a piecewise continuous curveVOrtex state is less and less likely to occur and finally disap-
with a nonzero average gradient. This is analogous to whéi€ars altogether.

has been found in 1D and 2D JIN‘%'? Because the flux
profiles display behavior reminiscent of the Bean critical
state model, we can argue that, besides local deviations, a Finally, we analyze the magnetic moment densityof
network critical state has been established in the JIN. Futhe 8x8Xx8 network defined by Eq8). In Fig. 7, the mag-

C. Magnetization of the network
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(a) (b) This behavior results in a network critical state. At increas-
" ing fields, clear flux fronts are present and the magnetic-flux

AR ] ol T !
\ : j . , ‘ penetration starts in the middle of the side faces. Comparing
m* " ' ﬁ the magnetic-flux distribution and the magnetic hysteresis
\\‘\ \ ] \ 3 curves of the 3D JJIN with the experiments on Bi-2223 poly-
-40 =20 Ov ‘20 -

\ \ crystalline sample$~2° we found that the higlg simula-
-19 « { tions of the 3D JJN give results which qualitatively agree
“0 0 00 w4 with the experimental results. The above suggests that a 3D
JJIN with highg is a valid model to describe qualitatively the
(c) 2me(7)/ o (d) 2m¢e(7)/ o low-field magnetic properties of a granular sample.
TR I Al s h . A quantitative comparison between calculations and ex-
RHLEN AT AVUPAVP AR periments is difficult because real polycrystalline samples
\( L':L consist of myriads of grains with varying intergranular prop-
erties; therefore the results in this paper are tentative, and
further studies are required in for more specific results on the
magnetic response of a 3D JIN and on the applicability of
0 2 =0 -0 o o2 these models for the study of the low magnetic-field behavior
27 ¢e()/ o 2m¢e(7)/do of granular superconductors. More detailed studies on a 3D
JIN as a model for the intergranular magnetic properties of
FIG. 7. Scaled magnetic moment density of 8xX 8 network as  high-temperature superconductor bulks would have to in-
a function ofe=2me(r)/ ¢, for three cases8=2= (a) and(b),  clude additional features such as structural disorder as well
B=1 (c), and=0.1(d). Field directionH=(0,0,1) for(a) (b) ()  as coupling inhomogeneities.
andH=(0,1#72,1#2) for (b).

0.5} |

-20

. . . . V. CONCLUSIONS
netic moment density of the system is plotted as a function of

the external field for value8= 2= (a) and(b), =1 (c), and We expanded existing inductive JJN models to 3D JIN'’s
B=0.1(d), and for the field directiong:(o,o,l)(a), (c)(d)y  Mmade of cubic subnetworks. To show the main characteris-

andH = (0,142,1~2) (b). Note thatm is scaled by a factor tics of the magnetic behavior of small networks, we pre-
27105/ g Such thaim* =||27roSm/ || With the highest sented the magnetic-flux distribution in thex8x8 net-
SQU?D pgrameter value8=27rothe S)(;stem evinces strong works for cycling external magnetic fields with fixed field

ot ; ; directions.
magnetizatior(a) and(b), and, except for a slight ripple, the -
magnetization curve resembles that in Bean’s critical state We found thaf[ the networ'ks screen their inner parts from
model'® The maximum magnetization of the sample isexternal magnetic flux, provided that the SQUID parameter

weaker for the field directiom =(0,14/2,142) than for H is sufficiently high, whereas weak shielding is detected for
=(0,0,1). The periodicity of the magnetization as a function

low SQUID parameter values. For external magnetic fields
; . - higher than the lower threshold field of the network, the

of the external magnetic flux also changes with a changin

field direction, as seen by comparing the curyaswhere

%agnetic flux enters into the system in the form of Josephson
Agro=47 and (b) where A .= 2v2 . Generally, the peri- network vortices whose magnetic moments have favorably
odicity differs from that of a 1D or 2D JIN with the differ-

the same direction as the external magnetic field. These vor-
. : . tices tend to penetrate deeper into the network as the external
ence caused by the mutual inductive coupling of branches,
shown in Fig. Ta), where the period i\ y.=47. At B

arﬁagnetic field is increased. The behavior is to some extent
=1, both the oscillation ofm* as a function of the external

analogous to the penetration of magnetic flux into type-ll
field and its maximum absolute value are enhanced, the pe

superconductor®
) - = " Finally, though further studi ired to estab-
riodicity now beingA y,— 2, as shown in Fig. @, and inally, even though further studies are required to estab
thus similar to that of a 2D JJR. At about theses values,

lish a quantitative agreement between the magnetic response

the ripple a nonzero magnetization component prevails, indi
cating that a network with3=1 still has magnetic flux
pinned inside the network. Thus, gt=1, the network has We thank Professor L. Kettunen at Tampere University of
neither a clear network vortex state nor a network criticalTechnology, and Professor S. Pace at University of Salerno
state but is in a regime of transition. Whe#=0.1, the  for helpful discussions. A.T. also wishes to express his grati-
magnetic-moment density of the network is small, indicatingtude to Finnish Academy of Science and Letters for support.
weak screening effects. Maximum magnetization occurs at

A= 27 periods, and oscillation, caused by surface barrier APPENDIX A: INDUCTANCE CALCULATIONS
pinning, is then clearly present.

superconducting samples.

Adopting a 3D(Josephson-junctigmetwork as a model
IV. DISCUSSION to study the eIectromag_netlt_: properties of a real granula_r
system, we should bear in mind that the currents depicted in
For SQUID parameters sufficiently high we found that thethe circuit in Fig. 1 describe only the currents which effec-
network screens its inner part from external magnetic fluxtively flow into the junctions. In this way the current distri-
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FIG. 8. (a) Choice of tree of facets made for cubic network and  FIG. 9. (@) Choice of tree of edges made for cubic network and
(b) its co-tree. (b) its co-tree.

bution in Fig. 1 does not reproduce the actual current distri-

bution of the physical system. However, a complete

treatment of the physical system is rather involved since the o o

shielding currents circulating at the grain surfaces are nof/here the second part on the right is to eliminate the mutual

easy to calculate and only a portion of the superficial currentnductive effect of the opposite branch in the loop. For

density flows through the junctions. Therefore we shall con=210um and 2=0.1um, | is 9.097< 10" **H. Using the

sider only the simple case of the network shown in Fig. 1. method above, we calculated the partial mutual inductance in
Since the loop current method proved ineffective with theemong all the branches and built up a matixwhich was

3D network, we developed, in Sec. Il and Appendix B, athen used for 3D JJN, as described in Sec. II.

method using branch currents. Mutual inductive coupling

was then taken into account by introducing a partial mutual APPENDIX B: UNIQUE SOLUTION

inductance, Eq(5). Here we consider the calculation of the OF THE FLUX CURRENT LINKAGE

inductances. In the beginning, we note that all the branches ) ) ) )

in the network in Fig. 1 are either perpendicular or parallel to  AS stated previously, Ed6), which links the magnetic

each other. Because in the Neuman formilahe perpen- flux and branch currents, is underdetermined. Indeed, the

dicular components vanish, in the following, it is enough tomagnetic fluxd has linearly dependent components. In this

deal with two parallel current blocks at a time. Let us con-case the linear dependence arises from the Maxwell equation

sider two one-dimensional wires 1 and 2 of lengtplaced V-B=0, which implies that over each closed surfacen-

in the u direction and being a distance df, ,, apart from  closing a volumev we must have

each other orfv, 7) plane with centersl,, apart inu direc-

| = Ligo/4+ Z—i[Za— 2\2a2+2asinh 1(1)], (A3)

tion. We obtain J (B-mdA=0 (81)
A L
d . . .
m ar:ﬂ faf‘ﬁ ”ﬁ, (A1)  Wwheren is the normal component of the differential surface
P am Jo a, \/d51”+(|1—|2) dA Equation(B1) means that the magnetic flux coming into
the volumeV must be equal to the outflowing flux. Conse-
which is solved analytically. quently, each cube has one face whose magnetic flux can be

However, if the branchesu()(r) and (u)(r’) refer to the  described in terms of the fluxes across the other faces. Let us
same location(=r"), the integrand in the integral, which now turn to the currents. Unlike with the loop current
gives the coefficienM(,(r,r'), is singular. To solve this method, Eqs(1)—(6) do not imply the Kirchoff's current rule
problem we may first consider the self-inductances of a curto hold for the branch currents. Instead, it has to be explicitly
rent loop. Each face of the cube can be thought to contain Egquired. According to the rule one of the branch currents
square current loop made of thin cylindrical wire of diametercan be expressed in terms of the other currents at each node.
2r and the side length. The self-inductance of the whole ~ To make the solutions unique we may proceed as follows
loop is then given b2’ using simple network theorRf*° At first, we can remove

the linearly dependent fluxes from the flux vectbr The

a 2a fluxes through the faces can be calculated by introducing a
I _Ros 2+8(In—+\/2—2>> (A2) tree and a co-tree in the cubic network. A facet tree is a
oop™ » . . _ . .

™ r V2 maximal set of facetg§=cubic face$ without any cycles,

where the cycle is a set of facets without a boundaSuch
Each loop can be divided into four branches, each with a tree can be made, e.g., in the way shown in Fig. 8.
partial self-inductancé and a negative mutual contribution Now each cofacet.e., co-tree facetcloses a surface with
from the opposite brancimg,, such thatl oo /4=1—mp;. some volume within. Therefore a flux through any facet on
Therefore the partial self-inductance for the branches can bne co-tree can be expressed in terms of the facets on the tree
obtained from belonging to the path of the co-facet in question. Hence lin-
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early dependent fluxes can be eliminated by omitting thdree as a function of branch currents belonging to the co-tree,

fluxes belonging to the co-tree, by removing the correspondkt is identity matrix, and . is the currents on the co-tree. The

ing components frond and the corresponding rows frofr ~ number of the edges on the co-tree is the same as the amount
Since the branch currents have to obey Kirchhoff's cur-of the facets on the facet tree.

rent rule, we introduce a tree and co-tree on the cubic edges, Finally, the inverse problem can be written as

Fig. 9. All the branch currents, satisfying the current rule,

can be computed by solving the branch currents on the edges ~ Q
belonging to the co-tree. In matrix form we write C=|PM| | "||let (B3)
= ? [t (B2)  where the matrix in outer brackets is invertible. Having

solvedly, we can finally obtain the branch currents from Eq.
where a row ofQ gives a branch current belonging to the (B2).
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