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Introduction

The mysteries of higher mathematics are often neglected
by the chemist, who manages to create increasingly com-
plex atomic and molecular-scale self-assemblies despite that
neglect. Nature’s solutions to mutual spatial arrangements of
atoms or molecules, from metallo-organic ligands in modern
metal-coordination polymers or lyotropic liquid crystals to
materials as banal as silica, are often more clever and elegant
than theory can concoct.

We recall a conversation with a senior Australian colloid
chemist at an international conference a decade ago. ‘What
has topology to do with colloidal assemblies?’ one of us was
asked after delivering a lecture at an international conference
on colloid science that sought to link topology and molecular
self-assembly.A belated, oblique response is this paper, which
seeks connections between non-euclidean geometry, group
theory, and the structures of atomic and molecular materials.
(‘. . . Probably about as much as hyperbolic non-euclidean
geometry.’)

The paper deals with symmetric packings, networks, and
spatial partitions. It is a preliminary survey of the tight con-
nections that exist between symmetric patterns in different
spaces. We do not intend to offer a systematic exploration
of non-euclidean and euclidean patterns here. The prime
purpose of this paper is to argue a simple, though not
widely appreciated, thesis: Chemists recognize the centrality
of symmetric patterns in understanding condensed atomic,

molecular, and colloidal aggregates. To that end, various
approaches to generation and systematic cataloguing of sym-
metric patterns have been developed. However, so far, no
universal toolkit exists, that spans the array of forms found
in condensed atomic, molecular, polymeric, and colloidal
materials. One promising generic approach is the explo-
ration of symmetric tilings and packings in two-dimensional
hyperbolic space and subsequent mapping into conventional
three-dimensional euclidean space. That approach has the
following attractive features.

• Highly symmetric hyperbolic tilings (whose symmetries
are commensurate with euclidean symmetries) produce
symmetric structures, affording a natural ‘filter’ to deduce
chemically useful structures.
• Many euclidean structures can result from a single hyper-

bolic one.
• A broad spectrum of structural objects result readily. For

examples

– Projections of tilings with finite-sided tiles produce
3D translationally periodic nets, including arrays of 2D
and 3D nets.

– Projections of trees (infinite sided tiles) produce mul-
tiple interpenetrating nets.

The case is demonstrated by a number of constructions
derived from simple hyperbolic patterns.Those constructions
are related to the solid and semi-solid state and are relevant
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to atomic crystals, covalent frameworks, coordination poly-
mers, and liquid crystals formed by larger molecules, such as
amphiphiles or molten block copolymers.

The paper is organized in two parts. Some familiarity
with non-euclidean geometry is needed to comprehend the
wealth of form available in hyperbolic space. Accordingly,
the first part consists of ruminations on hyperbolic geome-
try, inspired by a famous image of Felix Klein (written up
by his collaborator Robert Fricke), found in a masterwork
of 19th century mathematics: Vorlesungen über die Theorie
der elliptischen Modulfunktionen (figure 35 of volume 1).[1]
To the student of non-euclidean geometry, the image reveals
many of the riches of the symmetries of 2D hyperbolic geo-
metry. To the group and number theorist, it is equally rich.
For the purposes of this paper, we view Klein’s image through
the lens of geometry. Klein’s modular group tiling is a spring-
board for the later constructions. We first explore the concept
of symmetries in hyperbolic space and its relation to conven-
tional euclidean 2D symmetries, with the help of ‘orbifold’
theory, developed recently. We then extract features of the
Klein image, with particular emphasis on symmetric tilings
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with polygonal faces and symmetric packings of infinite
‘trees’, devoid of closed faces. En route, a number of obser-
vations about the nature and peculiarities of hyperbolic space
are noted, in part for their intrinsic interest, in part for their
relevance to 3D symmetric patterns. In particular, the char-
acter of ideal polygons (peculiar to hyperbolic space) and
their bewildering variety of tiling possibilities is discussed.
In addition, very low density disc packings are explored for
their possible relevance to low density (and therefore highly
porous) framework materials in 3D euclidean space. The first
part concludes by transposing the most interesting features
of Klein’s image to a slightly different symmetry setting, in
order to admit projection to 3D euclidean space.

The second section explores features of possible forms
in 3D euclidean space that hint at a wealth of structural
complexity. The forms are related to hyperbolic patterns
described in the preceding section, by a specific projec-
tion process. Projections used here invoke only the sim-
plest projection ‘substrates’, the 3D crystalline minimal
surfaces of cubic symmetry. Details of the projection are
ignored as they require some analysis of differential geometry



Geometrical Chemistry—On an Engraving of Fricke and Klein 983

and group theory. (Indeed, we are still in the process of
developing those analytical techniques.) Our purpose here
is to reveal by example the richness of this approach. We
consider here three- and four-coordinated tilings to generate
extended three-coordinated and four-coordinated crystalline
frameworks. We also explore in some detail the projections
to 3D euclidean space of hyperbolic ‘forests’, consisting of
close-packed trees. These examples prove to be particularly
interesting, allowing for multiple interpenetrating extended
frameworks, as well as laminations and interweavings of
extended (often warped) planar frameworks (or ‘nets’). The
nature of interpenetration is discussed briefly, as the approach
affords useful insights into classification and control of inter-
penetrating nets. Lastly, we show that these interpenetrating
nets can be used to derive novel surface partitions of space
that combine features of better-known partitions, such as
honeycombs and sponges, in novel ways.

Fig. 1. Hand-carved engraving of the upper half-plane model of 2D
hyperbolic space of the symmetries of the modular group. From Fricke
and Klein’s encyclopedic tomeTheorie der automorphen Funktionen.[1]

*2

e*2

e*323

*3 �

Fig. 2. Fricke and Klein’s engraving of the modular group, drawn within the Poincaré disc model of 2D
hyperbolic space. Inset: Our digital redraft of their figure, labelled to reveal distinct vertices of types *2
and *3 and edges e∗2 and e∗323.

Hyperbolic Geometry, Tilings, and Disc Packings in
the Modular Group

The origins of Klein’s image are impressive, and confirm the
profound connection between geometry and number theory.
Two versions of the image are available, and the first appar-
ently appears in the papers of Gauss, though Fricke and Klein
have a wonderfully clear image in their tome, Theorie der
automorphen Funktionen (Fig. 1). It is a tiling of the upper
half (complex) plane by triangles made up of semi-circular
arcs, with vertex angles π/3, π/2, and 0. Tiles are alternately
shaded light and dark. The tiling defines symmetries of the
‘modular group’, and the map conserves the angular struc-
ture of those symmetries. (The uppermost tiles appear to be
four-sided. Formally, the two vertical sides are considered to
meet at a single point—infinity.That notion implies that these
tiles too are triangles.)

These transformations define symmetries of Klein’s
multiply periodic automorphic functions (similar to the usual
singly-periodic circular trigonometric functions). In addi-
tion to the apparent translational periodicity, the modular
group is a non-euclidean kaleidoscope, by analogy with toy
(euclidean) kaleidoscopes. The group is replete with mirror
reflections.

To appreciate the subtlety of those symmetries, it is con-
venient to map the upper half-plane model of Gauss onto
the unit disc, by means of a standard transformation that
is conformal (that is, it displays all angles with their true
values in hyperbolic space). That operation gives the pat-
tern so carefully engraved in the book of Fricke and Klein
(Fig. 2). Notice that indeed, the smallest tiles are triangles
with vertex angles of π/2, π/3, and 0, and the edges remain
circular arcs of variable radius. In this image, the zero-angle
vertices are located around the perimeter of the unit disc,
with all edges meeting the perimeter at π/2. The picture
can be read as an image of a non-euclidean 2D space, the



984 S. T. Hyde et al.

hyperbolic plane (H2). This is Poincaré’s disc model of that
space, in which the analogues of euclidean lines (hyperbolic
geodesics) are described by circular arcs.The boundary of the
disc, the unit circle, defines points in H2 that are infinitely
distant from its origin. Circular arcs that intersect the unit cir-
cle orthogonally correspond to geodesics of H2. Poincaré’s
model is astonishingly compact, with massive shrinkage
of H2 to squeeze it into the unit disc of the euclidean
plane (E2), D2. That shrinkage is again conformal, so that
the angles between arcs are exactly those in the hyperbolic
space H2. The arrangement of geodesics in Figure 2 is that
of mirror reflection lines of the modular group.

The symmetry group of that pattern is thus kaleidoscopic.
The entire space H2 can be covered without gaps or over-
laps by a triplet of reflection geodesics, intersecting at π/2,
π/3, and 0 (just as a conventional toy kaleidoscope is formed
by mirrors meeting at angles commensurate with flat space;
for example three mirrors subtending angles of π/3 with
each other). We label the symmetry of the modular group by
its Conway orbifold symbol,[2] *23∞. (Conway and Schäfli
notation are outlined more fully in the Appendix.) Orbifold
symbols provide a compact label for all 2D symmetry groups.
The symbol describes the symmetry operations within a fun-
damental domain of the group, consisting of sites of rotational
symmetry, labelled by digits (i for an i-fold rotation point)
followed by mirror paths, denoted by the string ‘*abc…’,
describing mirrors intersecting at angles of π/a, π/b, π/c….
(Glide reflections and translations are also possible, but not
needed here.) We label vertices of the *23∞ pattern of
Figure 2 according to their site symmetries—Those within
the interior are either *2 or *3 vertices, common to four and
six edges respectively; edges are of two types, those passing
through *2 vertices only, and those passing through a sin-
gle *2 and a pair of *3 vertices, labelled as e∗2 and e∗323

respectively (Fig. 2 inset).
The possibility of zero-angle vertices in hyperbolic poly-

gons has no precedent in euclidean geometry. The zero-angle
edges are parallel to each other and ‘meet at infinity’. (Indeed,
the zero angle vertices in Figure 2 all lie on the perimeter of
D2.) An infinite number of geodesics meet at these boundary
points, so that these points are common to an infinite number
of *23∞ triangles! We note that all ideal polygons {n∞} with
the same number of sides (n) are congruent.

Hyperbolic Tilings

The richness ofH2 symmetries compared with the euclidean
plane is overwhelming. Indeed, there are an infinite num-
ber of hyperbolic orbifolds, including an infinite number of
kaleidoscopic examples.

A concrete geometric expression of symmetries can be
found in tilings. A tile is a shape (or shapes) that tessellates
the space without gaps or overlaps. We consider here only
the simplest regular tilings, containing a single tile whose
symmetry is as high as possible, consistent with the related
symmetry group. Examples of such tilings in E2 are well
known: they are the square, triangular, or hexagonal tilings,
and subdivisions or gluings thereof. We denote a tiling
by its Schläfli symbol, {n,z}, for an n-sided tile, with z

neighbours sharing each vertex (see also the Appendix).
We adopt the following convention. Regular tilings, with
identical vertices, edges, and faces, carry the symbol {n,z},
while less-symmetric irregular examples are denoted (n,z).
Consider first the symmetry of regular tilings. Each tile,
{n}, has a centre of n-fold rotational symmetry, where n

mirrors meet, giving site symmetry *n. In addition, ver-
tices have symmetry *z and edges *2 at their mid-points,
generating a *2zn kaleidoscope. In general then, {n,z}
tilings have kaleidoscopic symmetries, with Conway orbi-
fold symbol *2zn, and the tessellation is produced by the
orbit of a vertex at the *z site under the action of the mir-
rors. (Notable exceptions to this behaviour are discussed
below.) Thus, decoration of the *236 orbifold gives the
2D euclidean ‘wallpaper’ tiling of regular triangles (Fig. 3a).
Similarly, the *23∞ kaleidoscope of Fricke and Klein defines
a regular tiling of H2, {3,∞}, by ideal triangles, {3∞} (an
ideal triangle with vertices at∞); Fig. 3b.

Trees

Closer inspection of Fricke and Klein’s engraving reveals
a sequence of ideal polygons, {z∞}, for all integers z> 2,
formed by fusing z− 2 ideal triangular faces (Fig. 4a). The
tessellations, {3,∞} and {4,∞}—regular tilings ofH2—are
thus also contained as subgraphs of Fricke and Klein’s image
(Fig. 4b)!

These exotic tilings lead to even less familiar duals. The
dual is obtained by swapping vertices and faces; the dual of
{n,z} is {z,n}. We construct the dual tilings by replacing each
face by a single vertex at the in-circle centre of that face, and
extend edges between all faces sharing a common edge in
the original tiling. Duals {∞,z} of the {z,∞} tilings of
ideal polygons described in the previous paragraph contain
infinite-sided regular polygons, with vertex angles of 2π/z.
The edges of these tilings are regular z-coordinated trees,
also generated from the hyperbolic kaleidoscopic groups
*2z∞. (An example for the z= 3 case is shown in Fig. 9a).
Indeed, vertices of trees (∞,z) are coincident with vertices
in Figure 2 for each integer z> 2. (Recall parentheses ‘()’
indicate that the tilings are irregular and contain inequivalent
faces, edges, and vertices.) Note, however, that regular trees
{∞,z} cannot be traced in the image of Fricke and Klein for
z> 3 as the highest-order symmetry sites are *3, and higher
polygons {z} require *z sites.

One further subtlety surrounding tilings by ideal polygons
remains hidden within Fricke and Klein’s image. Distinct
symmetries can be found for the regular {z,∞} tilings and
their duals, in addition to the regular kaleidoscopic groups
*2z∞. For example, mirrors can be successively removed,
leading to lower symmetries. This possibility too is a unique
feature of H2; as discussed above, regular tilings of E2 are
necessarily kaleidoscopic. For example, *2∞∞, 3*∞∞,
and 32∞(= 3222 . . .) orbifolds can be decorated to produce
{3,∞} tilings (Figs. 5 and 6). The reason for a variety of
symmetries can be traced to the peculiar geometry of ideal
polygons. As all edges are parallel, an individual tile is free
to slide relative to its neighbours along any boundary edge
without displacing other tiles. All these {z,∞} patterns can



Geometrical Chemistry—On an Engraving of Fricke and Klein 985

(a) (b)

Fig. 3. (a) Regular {3,6} tiling of the euclidean plane E2. (Alternate tiles are shaded for clarity only.)
A region corresponding to a single fundamental domain of the *236 kaleidoscopic orbifold, bounded by
three mirror lines, is hatched. (b) Poincaré disc model of a regular {3,∞} tiling ofH2 with identical ideal
triangles. A region corresponding to a single fundamental domain of the *23∞ kaleidoscopic orbifold,
bounded by three mirror lines, is hatched. (Curves beyond the bold unit disc are not relevant to the
tiling.)

(a) (b)

Fig. 4. (a) Ideal polygons within Klein’s pattern. Highlighted clockwise from top left: triangle, quadrilateral, pentagon,
hexagon, and septagon. (b) Regular {4,∞} tiling ofH2, with a single *2∞∞ hatched orbifold.

Fig. 5. Regular tiling {3,∞} ofH2 derived from Figure 2, built with
ideal triangles, {3∞} displaying orbifold symmetry *2∞∞. A single
fundamental domain (half a single tile) is hatched.

be symmetrized to regain the most symmetric *2z∞ pattern,
through displacement of tiles along either of the edges e∗2
or e∗323. However the duals of these patterns differ markedly
from each other, revealing yet a further novel feature of H2

geometry.

Low Density Disc Packings

We now consider patterns formed by locating hyperbolic discs
at vertices of Klein’s tiling. Hyperbolic disc packings are anal-
ogous to circle and sphere packings in euclidean space, and
the well-known concepts of packing density and stability can
be applied to disc packings inH2 without difficulty. Packing
density describeds the filling fraction (by area) of the discs
withinH2. The area of a hyperbolic disc of radius r is

2π cosh(r − 1) = 2π

(
r2

2! +
r4

4! + · · ·
)

(1)
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(a)

(c)

(b)

(d )

Fig. 6. Irregular tilings (3,∞) ofH2 derived from Figure 2, all containing regular ideal triangles. (a) 3*∞∞ (three-fold
sites coincident with vertices of Fig. 2 dotted); (b) 32∞ or 3222. . . (three-fold sites dotted, two-fold sites marked with ‘z’);
(c) and (d) show fundamental domains of the relevant orbifolds for (a) and (b) respectively (cross-hatched). Notice that
the fundamental domain of the patterns (b) and (d) is infinitely large, containing a single 3-fold and an endless number of
distinct 2-fold sites!

Hyperbolic space allows huge latitude in forming symmet-
ric disc packings, from very low density patterns to very dense
ones. Since the tilings—regardless of symmetry—are (z,∞),
all dual tilings are trees, (∞,z), also denoted here T(l, z) (or
T {l, z} for regular examples). Irregular trees contain sym-
metrically inequivalent {z∞} faces in the lower symmetry
{z,∞} patterns. For example, the 32∞ pattern contains dis-
tinct {3∞} faces: those with 3-fold rotational symmetries
at their centres, and those with 2-fold sites on an edge.
The dual (∞,z) tree thus contains distinct vertices, some
with equal edge angles (2π/z) and some without (Fig. 6).
Further, the edge lengths of the trees depend on their sym-
metry. The edge lengths l of regular trees (with symmetry
*2z∞) can be calculated from the formula relating edges l
with angles α, β, γ:

arcosh(l) = cos(α) cos(β)+ cos(γ)

sin(α) sin(β)
(2)

The edge length of *2z∞ trees T {lc, z} is thus (see also
Fig. 9a)

lc(i) = 2arcosh
(

cosec
π

2

)
(3)

twice the in-circle radius of the {z} polygon (compare
Equation (1)). We can place a disc of radius lc/2 at each
tree vertex, forming a z-coordinated disc packing inH2 (see
Fig. 7a for z= 3).

These are very low density (‘rare’) packings, whose
fractional area covering ofH2 (or packing density) is

4

z− 2
sinh2

[
arcosh

(
cosec

π

i

)]
(4)

or 0.30940 and 0.41421 for 3- and 4-coordinated packings,
respectively. That result follows from Equations (1) and (2).

Still rarer packings can be generated by the following
process. Decorate each z-coordinated disc centred on ver-
tices of the *2z∞ tree by z smaller discs, arranged rigidly in
the original disc so that each smaller disc is in contact with
one other such disc and shares a single boundary point with
the original disc (Fig. 7b). These decorated packings are now
all 3-coordinated, with packing densities

4z

z− 2
sinh2

( r
2

)
(5)
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(a)

(c)

(b)

Fig. 7. Disc packings in (a) and (b) H2 and (c) E2. (a) Results from locating discs at *3 sites of Figure 2. (b) Results
from ‘decorating’ each disc with three smaller nested discs. These packings exhibit very low densities (‘rare’), and (b) is
the natural hyperbolic analogue of the rarest euclidean 2D disc packing, shown in (c).

where r is the disc radius, equal to

artanh

√
cosec2 (π/z)− 1

2cosec (π/z)
(6)

giving densities of 0.19677 and 0.27618 for rare packings
formed by decoration of the 3- and 4-coordinated packings,
respectively. These packings have a natural counterpart in 2D
euclidean space, generated by decoration of the regular {6,3}
tiling. The resulting packing is conjectured to be the rarest
rigid disc packings in E2, of density (7

√
3 – 12)π≈ 0.3907

(Fig. 7c).[3] (A ‘rigid’ packing is locally stable; it cannot
be perturbed without first swelling the entire array, thereby
decreasing the packing density.)

The discs in the original undecorated rare packings are
arranged in horocycles of H2 (euclidean circles of infinite
radius). ‘Peripheral’ discs, located infinitely distant from the
origin (tangentially grazing the boundary of the Poincaré
disc), just touch, so that continuous loops can be traversed
along the discs, from the origin to infinity and back again
(Fig. 7a). Any shrinkage of the tree edges below lc will result
in crossings of tree edges. Söderberg has called such trees
‘critical trees’,[4] characterized by the critical edge length
lc(z) (Equation (3)) for regular trees. We note that the rare z-
coordinated packings shown in Figure 7 are not rigid. Discs
can be displaced relative to each other without lowering the
density since the common tangents to neighbouring discs lie
on the edges of polygons, amenable to displacement relative

to each other as described above.That displacement operation
generates new disc packings—also not rigid. Alternatively,
these can be generated by replacing all z∞-gons by discs of
radius a in irregular trees. Such arrangements are clearly real-
izable, as z∞-gons tile H2 without gaps or overlaps. Notice,
however, that in these irregular cases, discs are no longer z-
coordinated so that the packings are not locally or globally
dense; rather they are loose, and able to rattle against each
other. Examples for z= 3 are shown in Figure 8.

The rattles can be removed, and the packing rendered rigid,
by expanding the discs until they jam against each other.Thus,
edges belonging to these irregular (∞,z) trees are longer
than those of the *2z∞ regular trees, {∞,z}, demonstrat-
ing the relative rarity (in the sense of low density) of the
*2z∞ packings. This inverse correlation between symme-
try and density (high symmetry inducing low density) is a
notable one, encountered often in euclidean spaces also.

Forests

Yet another interesting class of patterns lies hidden within
the engraving of Fricke and Klein: ‘forests’ of multiple
trees. Consider first a countable sequence of regular trees,
{∞,3}, generated by connecting the neighbouring, next-
nearest neighbouring, . . . *3 points in Figure 2, as illustrated
in Figure 9a. Denote the sequence of three-coordinated regu-
lar trees derived by this construction T(li,3), where li denotes
the edge length between connected i-th neighbouring *6 ver-
tices. The first and last members of the family, T(l1,3) and
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(a) (b)

Fig. 8. Sketches of unstable disc packings formed by incircles of tiles of the (a) 3*∞∞ and (b) 32∞ patterns of Figure 5.
In contrast to those in Figure 7, these packings are not rigid.

(a) (c)(b)

Fig. 9. Three members of the sequence of three-coordinated trees (red) with successively longer edges, superimposed on Klein’s pattern (black).
All tree vertices are (dotted) *3 sites. (a) A single regular ‘critical’ tree, with edge length lc(3) (Equation (3)) formed by joining nearest *3 neighbours,
(b) next-nearest neighbouring *3 vertices of Klein’s pattern, and (c) a number of close-packed ‘star’-trees (with a single vertex per tree, and three
edges joining next–next- . . . -neighbouring vertices), forming a regular forest. Successive trees are coloured red, green, blue, and yellow. Trees in (b)
are irregular, while those in (a) and (c) are regular and their (geodesic) edges are contained in Klein’s figure (although our sketch has non-geodesic
edges).

T(l∞, 3) are sub-graphs of the edges in the original engraving
(while intermediate members are not, compare Fig. 9b).

Indeed, an infinite number of densely packed T(l∞, 3)
trees—a regular, dense forest with orbifold symmetry
*23∞—can be traced in Fricke and Klein’s engraving. Neigh-
bouring ‘trees’(actually star-like, containing only one vertex)
in this dense forest are separated by geodesics e∗2 (Figs. 2
and 9c) that reflect one tree into its neighbour. The geodesics
e∗2 coincide with the regular {3,∞} tiling introduced above
(Fig. 3b). Recall that the symmetry of the {z,∞} patterns
(Fig. 5) can be altered by sliding ideal polygonal tiles along
their edges. In the same manner, the symmetry of the regular
forest T(l∞, 3) can be adjusted by relative displacement of
neighbouring trees along the edges e∗2. That process allows
the distance between neighbouring vertices (in adjacent trees)
to lie in the interval [arcosh(5/3),∞), where the lower bound
is found in the *23∞ forest of Figure 9c and larger values can
be realized in forests of rotational symmetry 2323. For rea-
sons described in the next section, we choose a displacement

of arcosh(3). That case gives a ‘coincident site lattice’, with
partial overlap of forest vertices with those of another group,
*246, a supergroup of 2323.

Just as a countable family of trees can be found in the
Fricke and Klein image, a family of forests, consisting of
densely packed trees, T {arcosh(3),3}, T {arcosh(5),3}, . . .
can be formed from successive vertices in the *246 tiling.[5]
The tree vertices of all members of this family are identi-
cal; distinct members are formed by choosing different edges
linking those vertices. Note that all these forests consist of
3-coordinated trees.

The most symmetric[6] example is that with the shortest
edges, T {arcosh(3),3} and orbifold symmetry *2223. Dense
forests of z-coordinated trees can be formed in H2 with
symmetry *222z; these examples contain vertices at the *z
sites and tree edges along the e∗z2z edges of the hyperbolic
kaleidoscope (generalizing the notation for edges introduced
above). We can therefore construct dense forests with 3- and
4-coordinated trees commensurate with *246, since *2223
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(a) (b)

Fig. 10. ‘Forests’ of close-packed trees generated from a kaleidoscopic tiling ofH2 by *246 domains
(alternate tiles are shaded). (a) A *2223 forest with 3-coordinated trees, showing a single separating
geodesic (linking adjacent *2 sites), with a fundamental domain highlighted in black. (b) A *2224 forest,
containing 4-coordinated trees.

and *2224 are subgroups (orders 2 and 3 respectively) of
*246. These forests contain trees of type T {arcosh(3),3} and
T {arcosh(5),4} (Figs 10a and 10b, taken from ref. [5]).

Dense Disc Packings

The *24(6) tiling can be generalized to a *24(2z) tiling;
each integer z≥ 3 admits a one-parameter (λ) family of
forests, consisting of densely packed z-coordinated regu-
lar trees, T (λ, z). Discs can be centred at vertices of the
z-coordinated forests, the vertices of regular {4,2z} tilings,
forming 2z-coordinated dense, rigid packings (Fig. 11, z= 3).
In contrast to the z-coordinated rare disc packings formed by
placing discs on tree vertices, these 2z-coordinated packings
are dense, with packing fractions

4

z− 2
sinh2

( rz
2

)
(7)

where rz is the disc radius, equal to

arcosh

√
1+ cos2 (π/2z)

sin (π/2z)
(8)

giving space-filling fractions of 0.82843 and 0.84776 for
z= 3 and 4 respectively.

Still denser rigid disc packings are formed by insert-
ing 4-coordinated (B) discs in the interstices of the dense
2z-coordinated packings, centred at the vertices of a regular
{2z,4} tiling (Fig. 12a). The resulting binary rigid packing,
with 4z-coordinated (A) discs and 4-coordinated (B) discs,
has stoichiometry A2Bz and packing fraction

2z+ 4

z− 2
sinh2

(
λz

2

)
(9)

where λz is the radius of the smaller interstitial (B) discs:

λz = 1

2
arcosh

(
cot

π

z

)
(10)

†The limit case for divergent z has no counterpart in euclidean space. Its packing fraction is 0.9610, exceeding that of the 2z-coordinated packing of equivalent
discs, 0.9003. Yet both packings have effective stoichiometry B (the former has stoichiometry A2B∞, or B) and the geometry of the B lattice is identical in
both packings!

These packings are very dense. Filling fractions for the
A2B3 and AB2 patterns (z= 3 and 4 respectively) are 0.9343
and 0.94110.†

The disc radii can be adjusted to give mixed 2z and
4-coordinated patterns with equal radii (Rz) for both A and B
discs (Fig. 12b). The coordination of A discs is now 2z while
that of B discs remains unchanged (z = 4). These packings
have space-filling fractions of

2(2+ z)

z− 2
sinh2

(
Rz

2

)
(11)

where

Rz = 1

2
arcosh

(
cot

π

2z

)
(12)

that is, filling fractions of 0.84385 and 0.91969 for z= 3
and 4 arrays (A2B3 and AB2) respectively. Equalization of A
and B disc radii to form non-overlapping, A2Bzdisc *24(2z)
symmetry packings is only possible for z= 3 and 4. (For z> 4
the B spheres are forced to overlap.)

Ribbons and Decorated Trees

A final structure of interest can be discerned in the image of
Fricke and Klein—its dual. This 3-coordinated tiling is a fas-
cinating pattern that we call a ribbon-decorated tree, with each
vertex of the critical 3-coordinated *23∞ tree, T(lc(3), 3)
decorated by a regular hexagon, {6}, and three half-squares,
with all vertex angles equal to right angles (Fig. 13).

We can transpose this decoration process to form ribbon-
decorated forests, commensurate with the *246 tiling. A
number of geometries can be selected; we constrain the pat-
tern to produce (4) and (6) polygons. Consider first that the
forest with the shortest tree edges commensurate with *246,
T (arcosh(3),3) (Fig. 10a), giving the image of Figure 14.

Consider first the case where the polygons are regular.
The vertex angles (α and β) are approximately 0.436π and
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(a) (b)

Fig. 11. (a) A dense, rigid, four-coordinated disc packing formed by locating discs on *6 vertices of the *246 pattern inH2.
(b) Poincaré disc (entireH2) shown in black, overlaid with a single *246 domain (hatched triangle) and a central disc (white).
The disc sector within the hatched domain generates the disc packing of (a) under the kaleidoscopic action of the *246 orbifold,
namely reflections in edges of the hatched triangle.

(a) (b)

Fig. 12. Dense, rigid, binary (A2B3) 4- and 12-coordinated disc packing formed by locating discs on *6 vertices and *4 sites of
the *246 pattern in H2. (a) Packing of Figure 11a (‘A’ discs) with extra interstitial B discs, tangential to the discs in Figure 11.
(b) Disc packings with centres at the same locations as those in (a), formed by shrinking A discs and growing B discs to give
congruent A and B discs.

Fig. 13. Klein’s pattern (dark) and its dual (red), generated by placing
a dual vertex in every tile of the original pattern (incomplete sketch).
The dual is a ribbon-decorated three-coordinated tree.

0.564π for the {4} and {6} faces, respectively, and the short-
est distance between edges of adjacent trees are about 0.368
times longer than the {6} and {4} edges.The regular {6} poly-
gons can be grown at the expense of the (4)’s, until there is
just enough space to accommodate regular {6} right-angled
polygons, with edge length arcosh(2) (and no bridging (4)
polygons, s= 0). This pattern is a regular net on H2, with
identical vertices common to four {6} faces (6.6.6.6).

Fig. 14. Decoration of vertices of regular 3-coordinated trees com-
mensurate with *246 symmetry (fundamental domains of *246 are
alternately shaded triangles). The resulting pattern is a forest of ribbon-
decorated trees. Each decorated tree is topologically identical to the dual
of Figure 13.

This process of decorating trees with ribbons can be
generalized to arbitrary *2z∞ trees, T(lc(i), i) (compare
Equation (3)). For general values of z, the ribbon decoration
then contains polygons (2z) and (4). For example, ribbon-
decorated 4-coordinated trees, packed into a forest, consisting
of {8} and {4} polygons, can be constructed.
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From Hyperbolic to Euclidean Space

The motivation for this detailed exploration of 2D patterns in
hyperbolic space lies in its relevance to structures in con-
densed chemical systems. Interesting patterns, relevant to
chemistry, can be derived from those hyperbolic patterns
met above. An understandable objection by the practising
chemist is similar to that raised by our colloidal chemist,
mentioned at the beginning of this article: Why complicate
matters when atoms and molecules reside in 3D euclidean
space? Our answer is this. In many respects, we simplify the
3D problem by working in 2D space, albeit curved. In partic-
ular, we have seen above that we can tune packing densities
rather readily. Further, novel patterns, including ribbon tilings
and forests are generated, whose analogues in 3D euclidean
space, E3, turn out to be of some interest to chemistry.

Our recipe for moving fromH2 to E3 is described in detail
elsewhere.[5] Essentially, we choose hyperbolic surfaces in
E3, that can be readily ‘unwrapped’intoH2. Our construction
from H2 to E3 reverses this process: We map from H2 onto
those surfaces, then embed the surfaces in E3. The technique
allows us to move betweenH2 and E3, provided the symmet-
ries of our pattern in H2 are commensurate with E3 (more
accurately, with some surface embedded in E3). The modu-
lar group, underlying Fricke and Klein’s image, has orbifold
symmetry *23∞. The presence of *∞ symmetry is incom-
patible with allowed symmetries of E3, and patterns with this
symmetry cannot be projected to E3 without some symmetry
mutation. Many examples of hyperbolic orbifold symme-
tries that are commensurate with E3 are known, thanks to
parametrization studies of infinite periodic minimal surfaces
(IPMSs). The allowed in-surface (intrinsic 2D) symmetries
of IPMSs are a good guide to admissible symmetries of H2

for mapping fromH2 onto E3.
IPMSs are translationally periodic (with three lattice vec-

tors), symmetric, saddle-shaped surfaces. Their geometries
and topologies have been explored at length in the past twenty
years, largely due to their relevance to chemical structures.[7]
The intrinsic symmetries of IPMSs are well studied, as they
determine the 3D euclidean form of the surface.[8] In order for
the projection ofH2 into E3 to give a translationally periodic
pattern, the underlying pattern inH2 must be commensurate
with the kaleidoscopic groups characteristic of the relevant
IPMS (namely form a suitable subgroup of the surface group).

The mapping from H2 to E3 is a projection. Though the
dimension of H2 is one less than E3, it is vastly more ‘spa-
cious’ than E3. Indeed, H2 is, in many senses, closer to E∞
than E3. For example, the area of discs inH2 grows exponen-
tially with radius (Equation (1), while that of euclidean balls
grows as rn, which matches that of H2 only in the limit,
n→∞. (That observation implies that we can project to
higher dimensional euclidean spaces also.)

For brevity, we choose here the most symmetric kalei-
doscopic group in H2 that is commensurate with E3, the
simplest and best-known IPMSs, three cubic, genus-three
IPMSs known as the P(rimitive), D(iamond), and G(yroid)
surfaces.These surfaces all share a common in-surface hyper-
bolic symmetry group, *246, introduced above.That imposes

Table 1. Projections of 4-coordinated nets fromH2 to E3, via the
primitive, diamond, and gyroid surfaces

The nets are identified by their vertex symbols inH2 and E3

projections by their standard zeolite code (where applicable), plus
space group and vertex positions

2D net P surface D surface G surface

(6.6.6.6) SOD NbO S*
Im3̄m Pn3̄m (origin 1) Ia3̄d
Vertices at 12d vertices at 6d vertices at 24d
[1/4, 0, 1/2] [0, 1/2, 1/2] [3/8, 0, 1/4]

(6.4.6.4) – SOD ANA
Im3̄m Pn3̄m Ia3̄d
Vertices at 24h vertices at 12f vertices at 48g
[0, y, y] [1/4, 0, 1/2] [1/8, x, 1/4 – x]
(y= 0.3249) (x= 0.3375)

the significant constraint thatH2 patterns must be subgroups
of *246 to be mapped to E3 via the P, D, or G IPMS.
(We note that many other hyperbolic kaleidoscopic groups
can be chosen also, depending on the choice of IPMS!).
We have demonstrated above that different pattern classes
derived from Fricke and Klein’s image—disc packings, nets,
trees, and decorated trees, can be transposed into symmet-
ries commensurate with *246, giving disc packings, nets,
and (decorated) forests. It is those derivative patterns, shown
in Figures 10–14, that we discuss here, as they can be
mapped to E3.

Nets and Extended Framework Structures

Nets, containing finite-sided polygons, have been (and are
being) explored extensively due to their relevance to chem-
istry, particularly solid-state chemistry.[9] The cataloguing of
nets in E3 has long been of interest to solid-state chemists,
though is only very recently advanced beyond empirical
enumeration, thanks to advances in tiling theory.[10] Our
approach complements that work.

Consider the simplest nets derived above, (6.6.6.6) and
(6.4.6.4). They map onto the P, D, and G surfaces to give a
variety of nets in E3 (Table 1). Many (though not all) of these
projections form extended framework structures.[11] Most of
these are well known to chemists:They include the tetrahedral
(Si, Al) ‘T-atom’ nets in the sodalite, faujasite, and analcime
(Figs 15a and 15b) frameworks (SOD, FAU, and ANA in the
Atlas of Zeolites[12]).

Two of these nets, (6.4.6.4) on the P surface and (6.6.6.6)
on the G surface, have not been reported as zeolite or related
frameworks. Are they chemically interesting? Vertices of
the former net can be decorated with squares, giving the
RHO zeolite framework (Fig. 15c).[13] The latter net has no
known analogue in extended chemical frameworks, although
it has been described by O’Keeffe,[14] who named it S* (with
vertices at positions of the S* lattice complex, Fig. 15d).
Its vertices define the Si positions in grossular (a garnet,
Ca3Al2Si3O12).[15] Two-coordinated vertices can be inserted
on edges on S*, to form a vertex-coordinated tetrahedral
arrangement (Fig. 15e). The tetrahedra are distorted, but
slight displacements, corresponding to cooperative rotations
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(a)

(c)

(e)

(b)

(d )

Fig. 15. (a) The (6.4.6.4) net projected onto the gyroid surface. (b)
Removal of the surface, and relaxation inE3, to form the most symmetric
euclidean embedding of this net (see also Table 1). The net describes the
covalent (Si,Al, O) framework topology of the natural zeolite, analcime,
with (Si, Al) T atoms located on net vertices. (c) Euclidean embedding
of the (6.4.6.4) net (red) on the P surface, closely related to the zeolite
RHO framework (blue). (d) Euclidean embedding of the {6,4} net onto
the gyroid; the S* network. (e) Insertion of additional 2-coordinated
vertices between adjacent S* sites, resulting in the vertex-sharing tetra-
hedral array. The tetrahedra can be made regular by small cooperative
displacements, leading to a novel array of possible relevance to (for
example) silicate structures.

of the edges in H2, render the tetrahedra regular in E3. This
structure is a reasonable prima facie candidate for a dense
silicate.

Two features emerge from the 2D hyperbolic perspective,
that cannot be described in detail here. Firstly, the framework
density, of relevance to designing large-pore frameworks, can
be seen to scale with the ring size in H2. We thus con-
clude that low density (or rare) frameworks require small
rings, a conclusion that appears at first counterintuitive in E3,
yet agrees well with observed rare zeolite frameworks.[16]

Indeed, quantitative lower bounds on framework densities
for silicate and other frameworks can be deduced from this
approach.[16] Secondly, the formation of chiral frameworks
in E3 can be induced by the mapping process,[17] by choosing
nets inH2 whose orbifolds are free of 2D reflections.

Dense Disc Packings

The disc packings in H2 of Figures 11 and 12 can also
be projected to E3, giving sphere packings and associated
structures. The projections are summarized in Table 2. The
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Table 2. Projections of dense hyperbolic disc packings into E3, via the primitive, diamond, and gyroid surfaces

H2 pattern Projection fromH2 to E3 via

2D disc packing P surface D surface G surface

6-coordinated packing on *246 Primitive cubic packing Cubic close packing Body centred cubic sphere
ρ= 0.82843 (Fig. 11) packing (6-coordinated)

Im3̄m Pn3̄m (origin 1) Ia3̄d
vertices at 8c vertices at 4b vertices at 16a
[1/4, 1/4, 1/4] [1/4, 1/4, 1/4] [0, 0, 0]

12-, 4-coordinated binary 12-coordinated packing 16-coordinated packing 14-coordinated packing
packing on *246 Im3̄m Pn3̄m (origin 1) Ia3̄d

(A2B3) *6 vertices at 8c *6 vertices at 4b *6 vertices at 16a
ρ= 0.84385 (Fig. 12b) *4 vertices at 12d *4 vertices at 6d *4 vertices at 24d

[1/4, 0, 1/2] [0, 1/2, 1/2] [3/8, 0, 1/4]
δ-Bi2O3 Cd0.5Bi1.5O2.75
M3P2 (M=Mg, Cd, Zn) Al, Si sites in garnet
M′3As2 (M′ =Mg, Zn)
Ag2O3

4z-coordinated disc packings of the *24(2z) orbifolds map
to very well-known packings in 3D euclidean space for the
case z= 3 (Fig. 11)—the simple cubic, body-centred cubic
(bcc), and cubic close-packed (ccp) arrays of spheres for the
P, G, and D surfaces respectively. Note that the coordination
number of the packings in E3 can increase beyond that inH2,
due to extra spatial contacts.

The binary (2z,4)-coordinated A2Bz pattern also leads to
interesting structures in E3. Again, consider the case z= 3
(A2B3).The D surface projection of that pattern (labelled here
A2B3(D)) is a ‘stuffed’ccp structure. The ccp array generates
tetrahedral voids.TheA2B3(D) packing gives a structure with
only three-quarters of those tetrahedral sites occupied, with
the *6 (A) sites mapped to those of a ccp lattice and the
*4 (B) sites mapped to interstitials in E3 (Fig. 16a). (Fill-
ing all of these sites gives the fluorite structure type CaF2.)
The G surface projection (A2B3(G)) is a stuffed bcc array,
with the *6 and *4 sites projected to bcc and interstitial loca-
tions in E3 respectively. Like the ccp lattice, we can describe
the bcc lattice in terms of octahedra and tetrahedra, albeit
irregular for the bcc case. The resulting structure consists
of vertex-coordinated distorted octahedral, or distorted tetra-
hedral, arrays (Figs 16b and 16c). The interstitial B atoms
occupy one-quarter of the distorted tetrahedral voids created
by the bcc A-lattice.

A number of examples of the D and G packings have
been discussed in the chemistry literature (see Table 2). The
high temperature (δ) phase of Bi2O3 has been suggested
to adopt an ordered arrangement of oxygen atoms in one
modification,[18,19] although there remains some uncertainty
in this model.[20] Partial replacement of Bi by Cd (with some
sub-stoichiometry) forms the compound Cd0.5Bi1.5O2.75.
This has been reported to adopt the G structure (with frac-
tional occupancy of the oxygen positions).[21] The common
non-euclidean 2D arrangement of the D and G projections
affords a useful structural link between these two materials.
The D array is also relevant to the family of silver oxides.
Though some uncertainty surrounds the precise nature of the
material with stoichiometry Ag2O3, an early structural deter-
mination reports the Pn3̄m (D) structure.[22] The D array has

also been reported for a number of phosphides and arsenides
(Table 2).[23] (These early studies incorrectly reported the
space group as P4232, rather than Pn3̄m. Later studies cast
some doubt on the structure, and reassessment of these struc-
tures remains desirable.) Finally, the G packing is related to
the structure of garnet, Ca3Al2Si3O12. The arrangement of
Si and Al ‘framework’ atoms in this mineral is precisely that
of the G packing![24]

Rare Disc Packings and Vertex Decorations

The issue of low density (rare) sphere packings in E3 is one of
relevance to structures in crystals, notwithstanding the usual
emphasis on dense packings. Examples of rare packings in
H2 have been introduced, based on z-coordinated (decorated)
trees.

The decorated z= 3 example (with density, ρ= 0.19677)
is a natural 2D hyperbolic generalization of the rarest 2D
euclidean disc packing, ρ= 0.3907 (Figs. 7b and 7c). This
packing, with equivalent discs, can be mapped onto the
G, D, or P surfaces, resulting in a (three-coordinated) 3D
euclidean sphere packing, with cubic symmetry (I4132).This
packing—described already in 1933 by Heesch and Laves—
is conjectured to be the rarest sphere packing with equivalent
spheres.[25] An exhaustive catalogue of three-coordinated
sphere packings by Koch and Fischer also identified this
packing (labelled by them 3/3/c1).[26] They established that
among all three-coordinated sphere packings with equiva-
lent spheres in E3, 3/3/c1 is the rarest (with a filling factor
of 0.0555, Fig. 17). Evidently, the construction of rare pack-
ings inH2 is a useful route to construction of rare examples
in E3.

The vertex-decoration process used to form the rare disc
packing in Figure 7b from that of Figure 7a can be generalized
to arbitrary values of z via replacement of each z-coordinated
vertex in the original tree by a polygon (z). A distinct dec-
oration process, that retains the original connectivity (z),
is the following, illustrated in Figure 18. Replace each z-
coordinated vertex by the complete graph, Kz. (This consists
of a net containing z vertices, each (z− 1)-coordinated to all
other vertices. In 2D, we can drawKz as a star with z vertices.)
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(a)

(c)

(b)

Fig. 16. Projections of the binary A2B3 disc packing (Fig. 14) via (a)
the diamond and (b) the gyroid surfaces. The structures can be described
in conventional terms as corner-coordinated (a) regular tetrahedra and
(b) irregular octahedra or (c) irregular tetrahedra.

Now decorate all vertices of the z-coordinated tree by Kz,
resulting in a new z-coordinated net. This ‘star-decoration’
process is identical to that invoked to generate the rare three-
coordinated disc packing (z= 3), but yields distinct nets for
larger z.

Fig. 17. View of the rarest (least dense) three-coordinated sphere
packing in E3 with equivalent spheres; likely also to be the rarest
(equivalent) sphere packing in E3.

Fig. 18. Vertex decoration process for (a) 3-, (b) 4-, and (c) 8-
coordinated nets. Vertex decoration by a z-gon results in 3-coordinated
vertices (middle column). Replacement of the vertex by a complete
graph of degree z (rightmost) maintains the original connectivity (z),
giving a ‘star-decorated’ vertex. Real vertices are dotted (crossings due
to the planar picture are not). Both processes are identical for z = 3.
For higher connectivities, they are distinct.

In general this decoration process leads to edge crossings
in H2 (or disc overlap in the related disc packing), but is
realizable without overlap in 3D (or higher) space. When z <
5, we can relax the star in E3, generating z-coordinated rare
nets. Some of these examples are already known to structural
chemists. For example, decorations of the regular 3- and 4-
coordinated trees by K3 and K4 respectively and projection
onto the D surface, result in the nets Y∗3 (see Fig. 25c) and
D4, known already to O’Keeffe.[9b] Like their hyperbolic
counterparts, these euclidean 3D nets are also rare—although
still rarer examples are known.[9b]

Trees, Forests, and Interpenetrating Nets

Recall that low density (‘rare’) disc packings are related to
trees in H2 (Fig. 7). A series of z-coordinated disc packings
result by centring discs of radius l/2 at vertices of regular
trees, T(l, z). As before, to map those low density structures
into E3, we choose an orbifold symmetry of the tree that
is commensurate with E3, such as *246. Recall that regu-
lar 3- and 4-coordinated trees can be packed densely in H2

with symmetries that are subgroups of *246 (Figs. 10a and
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Table 3. Projections of three-coordinated trees inH2 to E3 via the primitive, diamond, hexagonal, and gyroid surfaces
The edge lengths in the H surface trees, l1, and l2, are variable, depending on the axial ratio of the surface

H2 pattern Projection fromH2 to E3 via

Trees P surface D surface H surface G surface

T {arcosh(3),3} 4 interpenetrating Y*+ 2 interpenetrating Y*+
*2223 (each net I4132; (each net P4132;

P4232 in toto) I4132 in toto)

T {arcosh(5),3} 8 interpenetrating Y*+
2*23 (each net I4132;

I432 in toto)

T {arcosh(5),4} 2 interpenetrating
*2224 diamond nets

(each net Fd3̄m;
Pn3̄m in toto)

T (l1,3) 3 interpenetrating
*2226 (8,3)-c nets

(each net P63/mmc;
P63/mcm in toto)

T (l2,3) 3 interpenetrating
*2226 graphite stacks

(each stack P2;
P6 in toto)

10b). Specific members project to E3 (via P, D, or G sur-
faces) to form multiple interpenetrating three-dimensional
extended frameworks.[27] Some examples found to date are
tabulated in Table 3. The 3-coordinated examples result in
interwoven Y∗ nets, identified within a chemical context
by Wells (his (10,3)-a net)[9a] and later O’Keeffe, who has
pointed out that it is the only 3-coordinated net with sym-
metrically identical vertices and edges. The most symmetric
(*2224) forest containing 4-coordinated trees projects onto
the D surface to give a pair of interpenetrating diamond nets
in E3.

Interest among chemists in interpenetrating nets has
been substantial; with significant contributions by Australian
chemists.[28,29] These nets define the bonding skeletons in
coordination polymers, metallo-organic crystals of interest
to the (somewhat euphemistically named) field of ‘crystal
engineering’, perhaps better termed ‘reticular synthesis’.[30]
Coordination polymers are of interest to materials scientists,
due to their magnetic, electronic, and porous features. Inter-
penetrating Y* and diamond nets are particularly common
examples of these materials. Indeed, all the examples listed
in Table 3—and many more—have been crystallized in the
laboratory and earlier described by Wells.[9a]

Our projection technique leads also to novel topologies
and geometries not yet described elsewhere in a chemi-
cal context, or synthesized. Two interesting examples, that
exemplify the topological and geometrical complexity that
can be realized by this technique are derived by projec-
tion of three-coordinated forests onto another IPMS, the
(hexagonal) H surface. The first consists of three interpen-
etrating hexagonal (8,3)-c nets of Wells[9a] (Fig. 19). Each
(8,3)-c net displays symmetry P63/mmc (a= (5/2)

√
3 and

b=√3 for unit net edges) with nodes at 2c (1/3, 2/3, 1/4)

and 6h (x, 2x, 1/4) (x= 5/6). The symmetry of the total pat-
tern, containing three equivalent nets, is P63/mcm (a= 5/2
and b=√3 for unit net edges) with nodes at 2a (0, 0, 1/4) and
6g (4/10, 0, 1/4).The second contains three interwoven stacks
of graphite nets, arranged to form a 3D lattice (Fig. 20). The
complete pattern has symmetry P6 (a= 3 and c=√3 for
unit edges) and nodes at 6d (1/2, 1/6, 0) and 6d (1/2, 1/3, 1/2)
(each graphite stack has symmetry P2). In both cases each
component net can be realized with equal edge lengths and
angles (Table 3). (The closest separation between nodes of
different (8,3)-c nets is a factor of (1/2)

√
3 smaller than the

edge length).

The Nature of Interpenetration: Links and
Knotted Graphs

The concept of interpenetrating nets poses a number of chal-
lenges to the theorist. A fascinating question, posed already
by chemists, is how to quantify notions of interpenetration.[31]
Sophisticated mathematical signatures are required. In that
context, it is interesting to compare the cases listed in Table 3
with the (topologically) complex examples of interpenetrat-
ing nets known to chemists, such as the multiple interpen-
etrating diamond nets.[32] One measure is the degree of
interpenetration, recognized decades ago by Wells. An essen-
tial concept for analysis of interpenetration is that of ‘strong
rings’.[30]

Carlucci et al. have recently analyzed coordination poly-
meric entanglement networks in terms of links inE3.[31] Links
are simpler than knots: They consist of interlocked, vertex-
free rings. The simplest n-links, can be drawn as n loops on a
(genus-one) torus, each with equivalent homotopy (winding
number around the various channels) on the torus images (for
example, Fig. 21a).
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Fig. 19. A trio of (8,3)-c interpenetrating nets generated by projection
of an irregular forest onto the H surface, with a single hexagonal unit cell
marked by dashed edges. (One net is coloured differently for clarity.)

Fig. 20. A second example formed by projection of a (regular) 3-
coordinated forest onto the H surface (with a hexagonal unit cell
indicated by dashed edges).

More complex links are decorations of multi-holed tori,
with genera larger than one (for example Fig. 21d).We can see
from these examples that the link character is encapsulated by
the surface topology and homotopy class of each loop. How
does this relate to our 2D approach? We can view links as
decorations of surfaces with lines, just as our interpenetrating
nets are surface decorations by (forests of) trees. Further,
any link can be traced as a set of non-intersecting lines (one
per link) on a surface, usually a multi-holed torus. Within
H2, the pattern due to a link is a general line array or a forest
of 2-coordinated trees. For example, the Borromean ring link
can be embedded on a genus-three torus (see Fig. 22).

Further characterization of the network interpenetration is
possible by the following construction. We take a unit cell of
the IPMS and ‘compactify’ it, gluing surface points that are
linked by a translation vector of the cell. This procedure is
formally identical to periodic (Born–von Karman) boundary
conditions; it results in a boundary-free surface, with donut-
style handles joining elements that are identical under the
translations induced by the unit cell. The compactification
is also applied to the tree edges on the surface, resulting in
a knotted graph of connectivity z (for a z-tree). The exam-
ples of interpenetrating nets we have generated so far (by

(a) (b)

(d )

(c)

Fig. 21. Embeddings of simple links as closed, non-intersecting wind-
ings on hyperbolic surfaces. (a) The Hopf link. (b) The Hopf link on the
genus-one torus. (c) The (5.2.1) link. (d) The (5.2.1) link embedded on
(top) the genus-two torus and (bottom) the genus-four torus.

(a)

(b)

Fig. 22. (a) The three-component Borromean rings link. (b) Embed-
ding of the Borromean ring link on the genus-three torus.

projection of forests built of identical trees, Table 3) display
a common interpenetration character. They consist of n com-
ponents (each one a disjoint graph), with every strong ring
of a particular component threaded by edges of all other
components. For example, a pair of interpenetrating sim-
ple cubic nets (that define the channels of the P surface,
Fig. 23a) can be compacted, to give a pair of interwoven
3-coordinated graphs (Fig. 23b). The resulting knotted graph
(Fig. 23c) is a branched version of the simplest link with two
components, the (2-coordinated) Hopf link.[32] This knotted
graph reticulates the genus-three torus.
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(a)

(c)

(b)

Fig. 23. (a) A pair of interpenetrating simple cubic nets (that define
the channel structure of the P surface). (c) Mapping of the graph in
(a) by gluing of graph elements separated by a lattice vector of the
(conventional cubic bcc) unit cell, mapped onto the genus-three torus,
that describes the topology of the glued P surface unit cell. (Note that
the diagram conserves the topology of the P pattern, not its geometry.)
(b) Knot image of the edges in (b) relaxed in E3. The resulting knotted
graph contains two disconnected components, consisting of three loops
sharing a vertex. Individual rings of each component graph are mutually
threaded in the manner of the Hopf link.

The observation that interpenetration can be designed by
projections of lines and trees from H2 into E3 has numer-
ous ramifications. For example, a route to construction of
multiple interpenetrating networks with a deficiency of inter-
penetration is suggested by the dual net to Fricke and Klein’s
pattern, and the decorated forests that emerge from that pat-
tern (Fig. 14). The examples of Table 3 demonstrate that
projection of trees allows for interpenetration. However, the
presence of finite rings in the ribbon- and star-decorated
trees—in addition to the unclosed infinite loops—implies the
presence of some rings in the projected structures that are not
interpenetrated. Indeed, as the number of finite rings deco-
rating each tree vertex in the ribbon-decorated patterns inH2

increases, the degree of interpenetration decreases. Ribbon
decorations of regular 3- and 4-coordinated trees packed into
forests project in E3 to partially interpenetrating structures.

(a) (b) (c)

Fig. 24. (a) An undecorated vertex of a 3-coordinated tree and its
decoration by (b) polygons and (c) ribbons respectively.

The degree of interpenetration is evident from the pattern in
H2. Trees—with no finite rings in H2—result in threading
of all rings in their E3 projections. Decorated trees, con-
taining a fraction of vertices adjacent to rings, are partially
threaded such that all rings visible in the H2 image remain
unthreaded in E3. Consider, for example, the decorations
of three-coordinated tree vertices shown in Figure 24. The
polygonal decoration (Fig. 24b) results in a threading factor
of 2/3 (one-third of the angles contains a ring), while the rib-
bon decoration (Fig. 24c) gives interpenetrating nets with a
threading factor of 1/3 (as two-thirds of the angles are now
contained within a ring). We can apply those decorations to
all the interpenetrating examples of projected Y∗ nets, listed
in Table 3, forming interpenetrating structures with various
threading factors.

Projections of single 3-coordinated trees and polygon-
decorated and ribbon-decorated trees give to the chiral graphs
Y∗+ (or Y∗−), Y∗3+ and Y∗(ribbon)+, respectively. Multi-
ple copies of a single enantiomer of each can be intergrown
to give the cases listed in Table 3, with varying degrees of
interpenetration. The graphs are illustrated below (Fig. 25).

These examples reveal some of the power of the approach.
Concepts of knottedness, handedness, and interpenetration
are readily controlled within H2. The observation that links
and knotted graphs can be generated by non-intersecting pat-
terns inH2 (and subsequent projection to E3) is an important
one. Indeed, we can generate nets of arbitrary topological
complexity from the projection process.

Novel Honeycombs and Sponges from Forests

We close with an example of relevance to colloid science.The
foregoing discussion of interpenetrating nets can be used as a
basis for generating novel surface partitions of space. These
partitions, which define the bounding walls of immiscible
microdomains within the materials, are generalizations of
the more familiar surface forms of relevance to lyotropic and
thermotropic liquid crystals and block copolymer melts.[7]
These include hexagonal honeycombs and bicontinuous
sponges, based on the geometry of the P, D, and G IPMSs. It is
now evident that the repertoire of forms available for molec-
ular self-assembly is far richer than previously imagined.

The surface partitions carve E3 into interwoven channel
structures. Thus, formally, the familiar honeycomb structure,
characteristic of hexagonal mesophases, consists of a hexa-
gonal array of parallel rods, and the D surface separates a
pair of interpenetrating diamond nets. We can derive new
partitions for any interpenetrating array of rods or nets. Given
the wealth of interpenetrating patterns now available, there is
a corresponding wealth of novel surface structures.
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(a)

(c)

(b)

(d)

Fig. 25. (a) Projection of a hyperbolic forest of 3-coordinated trees (Fig. 10a) into E3 via the D surface, giving four identical interpenetrating
enantiomeric Y* graphs (compare Table 3). Examples of enantiomeric 3-coordinated graphs generated by projection of trees and decorated trees.
(b) The cubic three-coordinated graph,Y* (whose vertices form the lattice complexY**), (c)Y*3, and (d)Y*(ribbon). Intergrowth of identical copies
of these graphs (as in (a)) results in decreasing degrees of interpenetration from (b) to (d), due to the increasing number of rings per vertex induced
by decoration processes shown in Figure 24.

Fig. 26. The tricontinuous hexagonal minimal surface that trisects
space into three equivalent labyrinths (shown in Figure 19).

The implications for molecular self-assembly have been
discussed recently elsewhere.[33] Here we show just one
example (Fig. 26). The tricontinuous hexagonal surface
whose channel structure is that of Figure 19. This and related
structures is likely to be as relevant to molecular assem-
blies as that of simpler IPMSs. Like IPMSs, these surfaces
are characterized by relatively homogeneous, symmetric
labyrinth structures.

Closing

It is clear from this multitude of examples that many of the
subtleties of three-dimensional structure currently of interest
to chemists are sometimes made visible within the hyper-
bolic perspective. Sphere packings, nets, polyhedral arrays,
rod packings, interpenetrating nets, and complex surface
partitions emerge from this construction. Evidently, there
is a multiplicity of structural paradigms one can choose to
model molecular and atomic crystalline arrangements, and
there is no simple ‘best’ description. However, the flexibil-
ity of the hyperbolic approach does offer structural scientists
a new way to design and describe complex patterns from
a two-dimensional perspective. In some cases, that perspec-
tive offers a view of structural relationships invisible to a
more conventional euclidean perspective.

The article has attempted to connect group theory, non-
euclidean geometry, and condensed material structures.
A possible response from chemists is the scepticism of col-
loid chemists, quoted in the Introduction, reflecting a current
obsession with ‘useful’ science. A useful rejoinder to that
obsession is that of Felix Klein himself, delivered in a lecture
in the United States, from September 1892.

‘I am led to these remarks by the consciousness of a
growing danger in the higher educational system of
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Germany—the danger of a separation between abstract
mathematical science and its scientific and technical appli-
cations. Such separation could only be deplored; for it
would necessarily be followed by shallowness on the side
of the applied sciences, and by isolation on the part of pure
mathematics.’[34]

Plus ça change!

Appendix: Schläfli Symbols and
Orbifold Symmetry Notation

Schläfli symbols are commonly used to describe the topol-
ogy of a net. We adopt the following conventions, suitable
for 2D embeddings of a net. Suppose the net contains
topologically equivalent vertices. Consider the ‘vertex con-
figuration’ for a z-coordinated net at a specific vertex, which
is common to the edges e1, e2, . . . , ez. We determine the
polygonal size of all shortest (‘strong’) rings containing
the vertex, and the z angles formed (in the 2D embed-
ding) by adjacent edges ej , ej+1. Denote that polygon by
nj . The vertex configuration for the vertex in question is
denoted by the symbol (n1.n2 . . . nj . . . nz). For example,
the hexagonal graphite (‘chicken wire’) net, or the network
of mortar lines in a brick wall has vertex configuration
(6.6.6) for all vertices. In cases where all rings are identi-
cal (n1= n2= · · · = nj = · · · = nz), we replace the vertex
symbol by a Schläfli symbol (n,z) (or (6,3) for the previous
example). In this paper we also include a crude symmetry
descriptor in this topological measure, enclosing the symbol
between braces {n,z} in the cases where the net is regu-
lar, with symmetrically identical vertices, edges, and angles
between adjacent edges. Thus, the graphite net is {6,3} while
the brick interstices are (6,3).

A more refined encoding of 2D (in-surface) symmet-
ries is afforded by Conway’s orbifold symbols. The symbol
describes symmetry operators within a single fundamental
domain of the symmetry group of the decorated surface. For
the purposes of this article, we consider only two symmetry
operators. These are ‘cone points’ and ‘mirror strings’. Cone
points are located at intersection of the axis of rotational sym-
metry (perpendicular to the surface) with the surface. We
denote a cone point by the single digit a, with a-fold rota-
tional symmetry. Mirror strings consist of contiguous paths
of mirror lines (namely lines of reflection symmetry within
the surface), with vertices on intersections of mirror lines
(if they occur), located at cone points. These are denoted by
the prefix ∗ (mirror) followed by a digit string bcd. . . that
describes the cone points at the intersecting mirrors in cyclic
order around the mirror string. For example, the graphite net
has cone points of orders 6, 3, and 2, all located at inter-
sections of mirror lines. Its orbifold symbol is *632 (more
familiar to crystallographers as the planar group p6mm).
Generic orbifolds combine cone points and mirror strings.
In those cases, cone points are listed first, followed by mirror
strings. Thus, the brick pattern has orbifold symmetry 2*22
(c2mm).

Why bother with yet another notation system? The attrac-
tion of Conway’s system is that it combines seamlessly

symmetries for all three 2D geometries (euclidean, ellip-
tic, and hyperbolic). No other simple notation system has
been developed for groups inH2. Further, the symbols allow
direct computation of the geometry class of the group and
(where applicable) its index relative to sub- or super-groups.
(The system also gives a trivial route to enumeration of all
the plane and point groups!) Elliptic groups are better known
to crystallographers as point groups. Orbifold notation thus
allows a common notation for plane and point groups for crys-
tallography. (For example, 4/mmm has orbifold symbol *224).
While we do not expect crystallographers to adopt the nota-
tion in a hurry, we find it less ad hoc and more friendly than the
conventional, inconsistent symbols used by spectroscopists
and crystallographers.

Acknowledgments

We thank Prof. Michael O’Keeffe (Arizona State University)
for inspiration and concrete assistance. We are also grateful
to Dr Christophe Oguey (Cergy Pontoise University) for his
contributions to this work.The figures of knots and links were
generated with the KnotPlot package, freely available[35]
thanks to the efforts of its creator, Dr Rob Scharein.

References

[1] F. Klein, R. Fricke, Vorlesungen der Theorie der elliptischem
Modulfunktionen, Bd. 1 [reprint 1966 (Johnson: New York, NY;
Teubner: Stuttgart)]. We hasten to point out that we came to
this reference circuitously. Klein’s image was first encountered
in a brilliantly accessible recent book: D. Mumford, C. Series,
D. Wright, Indra’s Pearls. The Vision of Felix Klein 2002
(Cambridge University Press: Cambridge).

[2] J. H. Conway, in Groups, Combinatorics and Geometry—London
Mathematical Society Lecture Note Series 1992 (Cambridge Uni-
versity Press: Cambridge). See also: J. H. Conway, D. H. Huson,
Struct. Chem. 2002, 13, 247.

[3] See: D. Wells, The Penguin Dictionary of Curious and Inter-
esting Geometry 1991 (Penguir: London); originally from
H. Meschkowski, Unsolved and Unsolvable Problems in
Geometry 1966 (Oliver & Boyd: London).

[4] B. Söderberg, Phys. Rev. E 1993, 47, 4582.
[5] S. T. Hyde, C. Oguey, Eur. Phys. J. B 2000, 16, 613.
[6] The notion of ‘greater’ or ‘lesser’ symmetry refers to the area

of the fundamental domain, which scales with the absolute
magnitude of the orbifold characteristic (or ‘cost’), computed
readily from the Conway orbifold symbol (ref. [2]).

[7] S. T. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh,
S. Lindin, B. W. Ninham, The Language of Shape 1997 (Elsevier:
Amsterdam).

[8] A. Fogden, S. T. Hyde, Acta Cryst. A 1992, 48, 575.
[9] See, for examples: (a) A. F. Wells, Three-Dimensional Nets and

Polyhedra 1977 (John Wiley: New York, NY). (b) M. O’Keeffe,
B. G. Hyde, Crystal Structures. I. Patterns and Symmetry
1996 (Mineralogical Society of America: Washington, DC).
(c) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi,
J. Solid State Chem. 2000, 152, 3.

[10] O. Delgado Friedrichs, A. W. M. Dress, D. H. Huson,
J. Klinowski, A. L. Mackay, Nature 1999, 400, 644.

[11] This identification was the initial impetus to the study of
IPMSs and their relation to crystal structures; see ref. [8].
The projection technique describe here is a later development
(ref. [5]).



1000 S. T. Hyde et al.

[12] C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Struc-
ture Types 2001 (Elsevier: Amsterdam); www.iza-structure.org/
databases/.

[13] M. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter,
M. O’Keeffe, O. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 2002,
99, 4900.

[14] M. O’Keeffe, Z. Kristallogr. 1991, 196, 21.
[15] O. Delgado Friedrichs, J. Plévert, M. O’Keeffe, Acta Cryst. A

2002, 58, 77.
[16] S. T. Hyde, Acta Cryst. A 1994, 50, 753.
[17] S. T. Hyde, S. Ramsden, in Chemical Topology. Applications

and Techniques (Eds. D. Bonchev, D. Rouvray) 2000 (Gordon
and Breach: Sydney).

[18] L. G. Sillen, Arkiv Kemi Mineral. Geol. 1938, 12, 1.
[19] A. A. Zav’yalova, R. M. Ivanov Zh. Struk. Khim. 1972, 13, 869.
[20] V. P. Zhukov, V. M. Zhukovskii, V. M. Zainullina,

N. I. Medvedeva, J. Struct. Chem. 1999, 40, 831.
[21] L. G. Sillen, B. Sillen, Z. Phys. Chem. B 1941, 49, 27.
[22] B. Stehlik, P. Weidenthaler et al., Coll. Czech. Chem. Commun.

1959, 24, 1581.
[23] (a) L. Passerini, Gazz. Chim. Ital. 1928, 58, 655. (b) G. Natta,

L. Passerini, Gazz. Chim. Ital. 1928, 58, 541.

[24] (a) H. Bartl, Neues Jahrb. Mineral. Monatsh. 1969, 404. (b)
G. A. Lager, T. Armbruster, J. Faber, Am. Mineral. 1987, 72, 756.

[25] H. Heesch, F. Laves, Z. Kristallogr. 1933, 85, 443.
[26] E. Koch, W. Fischer, Z. Kristallogr. 1995, 210, 407.
[27] S. T. Hyde, S. Ramsden, Europhys. Lett. 2000, 50, 135.
[28] S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 110, 1558.
[29] C. J. Kepert, T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc.

2000, 122, 5158.
[30] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,

M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
[31] (a) S. R. Batten, CrystEngComm 2001, 18, 1. (b) L. Carlucci,

G. Ciani, D. M. Proserpio, CrystEngComm 2003, 5, 269.
[32] L. Carlucci, G. Ciani, D. M. Proserpio, S. Rizzato, Chem. Eur. J.

2002, 8, 1520.
[33] S. T. Hyde, G. E. Schroeder, Curr. Opin. Coll. Interf. Sci. 2003,

8, 5.
[34] F. Klein, Gesammelte Mathematische Abhandlungen, vol. 2,

p. 231 [reprint 1973 (Springer: Heidelberg)].
[35] www.cs.ubc.ca/nest/Imager/contributions/scharein/KnotPlot.html.


