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Abstract

At present, there is an explosion of practical interest in the pricing of interest rate (IR) deriva-
tives. Textbook pricing methods do not take into account the leptokurticity of the underlying IR
process. In this paper, such a leptokurtic behavior is illustrated using London interbank o2ered
rate data, and a possible martingale pricing scheme is discussed.
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1. Introduction

In 9nancial theory and practice, interest rates are a very important subject which can
be approached from several di2erent perspectives. The classical theoretical approach
models the term structure of interest rates using stochastic processes. Various models
have been proposed and can be found in Refs. [1–3]. Although they provide analytical
formulas for the pricing of interest rate derivatives, the implied deformations of the
term structure have a Brownian motion component and are often rejected by empirical
data (see Ref. [4]). The inadequacies of the Gaussian model for the description of
9nancial time series have been reported since a long time ago by Mandelbrot [5], but
thanks to the availability of large sets of 9nancial data, the interest on this point has
risen recently [6,7]. In particular, the fat-tail property of the empirical distribution of
price changes has been widely documented and is a crucial feature for monitoring the
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Fig. 1. LIBOR interest rates r(T; t) as a function of the current date t, for the maturities T =1, 3, 6 and 12
months and EURO currency (left) and Pound Sterling currency (right).

extreme risks and for accurately pricing interest rate derivatives. An important recent
development in the pricing of interest rate derivatives is the emergence of models that
incorporate lognormal volatilities for forward London interbank o2ered rate (LIBOR)
or forward swap rates while keeping interest rates stable [8]. To our knowledge, up to
now, no universally accepted theory has been obtained for the description of interest
rates data [9].
In this framework, we have empirically studied the probability density distribution

of LIBOR, in order to characterize the stochastic behavior of the daily Huctuations. In
Section 2, we present the data set and the data analysis. Section 3 contains a short
discussion of a possible IR derivative pricing scheme using martingale methods.

2. Empirical �ndings

LIBOR stands for the London interbank o2ered rate and is the rate of interest at
which banks are willing to o2er deposits to other prime banks, in marketable size, in the
London interbank market. British Bankers’ Association (BBA) LIBOR [10] is the most
widely used benchmark or reference rate. It is used as the basis for settlement of interest
rate contracts on many of the world’s major future and option exchanges as well as
most over the counter and lending transactions. BBA LIBOR is compiled each working
day and broadcast through 10 international distribution networks. BBA LIBOR 9xings
are provided in seven international currencies: Pound Sterling, US Dollar, Japanese
Yen, Swiss Franc, Canadian Dollar, Australian Dollar, EURO. LIBOR rates are 9xed
for each currency at monthly maturities from 1 to 12 months. Rates shall be contributed
in decimal to at least two decimal places but no more than 9ve. In the following, we
have analyzed a data set of LIBOR interest rates r(T; t), where T is the maturity date
and t the current date, for EURO and Pound Sterling. These data are shown in Fig. 1
where t goes from January 2, 1997 to September 17, 1999, and T assumes the following
values: 1, 3, 6, 9 and 12 months for the Pound Sterling and 1, 3, 6, 12 months for the
EURO. In Fig. 2, the 1-month LIBOR is compared to the interest rates 9xed by Central
Banks at that time, namely the repurchase agreement (REPO) data. It is quite evident
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Fig. 2. LIBOR compared to REPO for EURO (left) and for Sterling Pound (right).
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Fig. 3. 1-month LIBOR increments as a function of the current date for EURO (left) and for Sterling Pound
(right).

that BBA LIBOR follows the trend determined by the decisions of Central Banks. In
order to roughly eliminate these trends, in Fig. 3 the interest rates di2erences Kr(T; t)=
r(T; t+Kt)−r(T; t), with Kt being 1 day and T=1 month, are plotted as a function of
the current date, for the EURO and the Pound Sterling, respectively. A similar behavior
is also found for the other maturities. Some large oscillations of Kr are induced by
Central Banks. In any case, Kr heavily Huctuates around zero. We focus the attention
on the probability distribution behavior of the interest rates increments Kr(T; t). To
this purpose, we estimate �(Kr), the complementary cumulative distribution function
of the daily interest rates increments, de9ned as

�(Kr) = 1−
∫ Kr

−∞
p(�) d� ; (1)

where p is the probability density of Kr(T; t). Because LIBOR data are supplied with
only few decimal digits, it is interesting to examine the e2ects of di2erent data cut-o2s
in the behavior of �(Kr). In Fig. 4, we plot the complementary cumulative distribution
function for a simulated Gaussian stochastic process using data characterized by three
di2erent decimal digit precisions. It turns out that the numerical rounding does not
inHuence the results. Fig. 5 shows the tail distribution behaviors in the case of EURO
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Fig. 4. The complementary cumulative distribution function of a simulated Gaussian stochastic process using
di2erent decimal digit precisions (cut-o2s).
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Fig. 5. The complementary cumulative distribution function of LIBOR increments for EURO (left) and
Sterling Pound (right). T = 1 month and Kt = 1 day.

and Sterling Pound, respectively. In particular, in Fig. 5 (left side), we report the
empirical results obtained estimating the probability density function of both positive
and negative LIBOR increments with Kt = 1 day and T = 1 month. These empirical
curves are slightly asymmetric and the negative variations are more probable than the
positive one. In the same 9gure, these two curves are compared with the equivalent (i.e.
with the same average and standard deviation) Gaussian complementary cumulative
distribution. The non-Gaussian behavior is also evident from Fig. 5 (right side). In
both Figs. 5, the empirical LIBOR data exhibit a fat tail or leptokurtic character,
which is present for the other maturities as well. These observations indicate that the
random behavior of Kr(T; t) is non-Gaussian and that using a Gaussian probability
density function leads to underestimating the probability of large Huctuations. For a
better understanding of the deviations from a pure Brownian motion and what kind of
stochastic process we are dealing with, we analyze the power spectral density behavior.
The power spectra [11], S(f), for both r(1; t) and Kr(1; t) are reported in Fig. 6 for the
EURO and in Fig. 7 for the Sterling Pound. For r the spectral density shows a power
law behavior. A linear 9t gives a slope value 
=−1:80±0:02 and 
=−1:79±0:01 for
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Fig. 6. Power spectrum of r(T; t) (left) and of Kr(T; t) (right) for the EURO. T =1 month and Kt=1 day.
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Fig. 7. Power spectrum of r(T; t) (left) and of Kr(T; t) (right) for the Sterling Pound. T = 1 month and
Kt = 1 day.

EURO and Sterling Pound, respectively. A similar result holds for the other maturities.
Therefore, we argue that the power spectrum analysis for r(T; t) indicates a stochastic
process with spectral components decreasing as S(f) ∼ f
 [12]. The power spectrum
for the increments (Figs. 6 and 7 (right)) is Hat, typical of a white noise process. These
results are also corroborated by a similar analysis performed on Eurodollars interest
rates for a longer time period [13].

3. Discussion

In the previous section, we have shown that the daily increment of the interest
rate series is non-Gaussian, non-Brownian and follows a leptokurtic distribution. The
problem arises of how derivatives written on interest rates can be evaluated, given that
the usual Gaussian white-noise assumption of many models is not satis9ed. Indeed, a
9rst partial answer is that the central limit theorem ensures that, after a suMciently long
time, the increment distribution will tend to a Gaussian distribution. However, if the
time horizon of derivative evaluation is not appropriate, deviations from the Gaussian
behavior may lead to a dramatic underestimate of large increments with a consequent
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improper risk coverage as well as option price estimate. Although well studied in
mainstream 9nance, this problem has received much attention in recent times, within
the community of physicists working on 9nancial problems. In particular, Bouchaud
and Sornette [14] suggested the direct use of the historical probability measure, rather
than the equivalent martingale measure for evaluating options. In this way, one gets
an option price depending on the expected rate of returns, a consequence which is
not fully desirable due to the subjective character of that rate. Assessing trends is
a diMcult task, as they depend on decision taken by Central Banks (as shown in
Fig. 2) and are based on macroeconomic e2ects. Thus, martingale methods could prove
more reliable. As early as 1977, some years after the seminal paper of Black and
Scholes, Parkinson generalized their approach to option pricing and explicitly took into
account leptokurtic distributions [15]. More recently, Boyarchenko and Levendorskii
have studied the problem of option pricing in the presence of a speci9c distribution
which seems to 9t well the empirical data in many instances: the truncated LOevy
distribution [16]. Wim Schoutens has recently published a book on LOevy processes in
9nance devoted to the extension of martingale methods to a large class of leptokurtic
distributions [17].
The method can be described from a heuristic point of view. Let S(t) denote the

stochastic process underlying a contingent claim C(S; t); thus, S(t) can be a price pro-
cess, an interest rate process, etc. Let X (t)= log S(t) be the corresponding logarithmic
process. Let further p(x; t) be the probability density of 9nding the value x of the ran-
dom variable X at time t (this is a conditional probability density in x with respect to
suitable initial conditions; here, X (0)=0). This density de9nes the probability measure
P. It is possible to show that, if the following relation holds true:

EP{exp[aX (t)]}=
∫ +∞

−∞
exp(ax)p(x; t) dx = exp[g(a)t] ; (2)

where EP denotes the expectation operator with respect to P, a is a complex number
and g(a) a complex function of a, then the process �(t; a) = exp[aX (t) − g(a)t] is a
martingale with respect to the measure P. Therefore, as a consequence of Girsanov’s
theorem, we can build an equivalent martingale measure QT;a such that the Radon–
Nikodym derivative dQT;a=dP is given by

dQT;a
dP

= �(T; a) : (3)

In order to price a contingent claim written on S(t) = S(0) exp[X (t)], we require that
the discounted process Sd(t) is a martingale with respect to the measure QT;a. This is
equivalent to the requirement that the process �(t; a)Sd(t) is a martingale with respect to
P. In this paper, we have shown that interest rates are Huctuating variables. However,
just for the sake of simplicity, let us consider a 9xed interest rate r. In this particular
case, the martingale condition is equivalent to the following equation:

g(a+ 1)− g(a)− r = 0 : (4)

In other words, if it is possible to determine a single value of a such that Eq. (4) is
satis9ed, the measure QT;a exists and is unique. For instance, if S(t) is described by
geometric Brownian motion with drift � and volatility �, we have g(a)=�a− (ia�)2=2
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and there is a unique solution of Eq. (4): a=−(�+�2=2−r)=�2. The reader is referred
to Ref. [16] for the case of truncated LOevy processes. Then, under the requirement that
C(S; t) be a martingale with respect to the measure QT;a, one can 9nd the price of the
contingent claim. If Cd(S; t) is the discounted process, we have

Cd(S; t) = �−1(t; a)EP[�(T; a)Cd(S; T )|Ft] ; (5)

where Ft is the appropriate 9ltration.
The technique has been already applied to derivatives written on interest rates, here,

we outline the generalization of a popular IR model: the Heath, Jarrow and Morton
(HJM) model, following Eberlein and Reible [18]. Within this model, the zero-coupon
bond price P(T; t) is given by

P(T; t) = P(T; 0) exp
[∫ t

0
r(s; s) ds

]
exp[

∫ t
0 �(T; s) dWs]

E{exp[ ∫ t0 �(T; s) dWs]} ; (6)

where �(T; t) is the bond volatility structure, Wt is the Wiener process, E is the ex-
pectation operator and r(s) := r(s; s). Note that r(T; t) has been interpreted as the
instantaneous forward rate f(T; t). The Wiener process can be replaced by a leptokur-
tic LOevy process Lt , such that the expectation in the denominator is 9nite. In this case,
it is possible to show that the discounted bond-price process is a martingale and that
the martingale measure is unique [19]. Also, the European vanilla call option price
on a bond maturing at time T can be obtained [18]. Along these lines, we believe,
it is possible to develop a consistent option pricing theory taking into account the
leptokurtic character of the empirical short- to mid-term interest rate distributions.
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