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Abstract

We propose a general method to study the hierarchical organization of financial data by
embedding the structure of their correlations in metric graphs in multi-dimensional spaces. An
application to two different sets of interest rates is discussed by constructing triangular
embeddings on the sphere. Three-dimensional representations of these embeddings with the
correct metric geometry are constructed and visualized. The resulting graphs contain the
minimum spanning tree as a sub-graph and they preserve its hierarchical structure. This
produces a clear cluster differentiation and allows us to compute new local and global
topological quantities.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we investigate the hierarchical organization of interest rates data and
we discuss a general method to characterize the statistical, geometrical and
topological properties of correlation matrices in complex systems. A number of
physicists have observed that the structure of the correlation coefficients from
complex datasets (such as time series from financial markets) can be conveniently
studied by mapping the data structures onto graphs [1-7]. Mantegna [1] has studied
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the hierarchical organization of such correlations by retaining only the most relevant
correlations which form the minimal spanning tree (MST) (see also [3,5-7]).
However, this reduction to a minimal skeleton necessarily results in extreme
sensitivity to dynamical variations in the system (small variations in interactions).
An extension from trees to graphs has been proposed by Onnela et al. [6], but a
general procedure which allows the construction of connected networks with varying
degrees of information content and controlled complexity has not been introduced
yet. In this framework, we propose to map the interest rates correlations into graphs
embedded on manifolds with different topologies in multi-dimensional spaces, both
Euclidean and non-Euclidean.

We chose to apply this method to interest rates data, because, in the Econophysics
literature, these data have been less investigated in comparison with the
investigations performed on stock market prices. Recently, these studies have
become very attractive and approached from many different perspectives [8—14].

For several economic reasons, distinct interest rates have very similar statistical
behaviors in time, following similar trends. This makes the subject very challenging
since one is no more dealing with the statistics of single objects but with the collective
dynamics of a whole complex set of highly correlated data.

Our study starts from the analysis of the collective behavior of the stochastic
fluctuations of interest rates data by using a clustering linkage procedure which has
been proved to be a useful tool to detect differences and analogies among these
tangled correlated data [12]. The output of this clustering linkage procedure, gives us
the simplest picture of the interest rates hierarchical organization. We show that the
same clustering structure naturally emerges from the embedding on the sphere of the
graph made by retaining the strongest correlations. We emphasize that the resulting
graph contains the MST.

The structure of this paper is as following: Section 2 describes the interest rates
data set, Section 3 gives a resumé of the main outcomes obtained from a correlation
cluster analysis. The general idea and the specific results are reported in Section 4
where a three-dimensional (3D) visualization of these metric graphs is also shown.

2. Data description

We investigate two data sets: 16 Eurodollars interest rates (Set 1) and 34 interest
rates in money and capital markets, referring to government, private, industries
securities and commitments (Set 2). Set 1 contains daily values f,(¢), where ¢ is the
current date and 3/ = 0 is the maturity date in the time period 1990-1996 [11]. On
this time period we have 16 different time series corresponding to maturity dates
ranging from 6 = 3 to 48 months with a step of 3 months (reported in Table 1). The
behavior of f,(¢) as function of 7 is shown in Fig. | where we use i(= 0/3) to label the
different maturity dates 6. For a better visualization of the plot, in Fig. 1(b) we
report only those values corresponding to the following maturity values: 0 =
3,15,30,48 months. The interest rates behaviors for all maturity dates follow very
similar trends in time, and stay mostly inside the shape traced by the two extreme
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Table 1
Data set 1: Eurodollar interest rates in the time period 1990-1996
i 0 months i 0 months i 0 months i 0 months
1 3 5 15 9 27 13 39
2 6 6 18 10 30 14 42
3 9 7 21 11 33 15 45
4 12 8 24 12 36 16 48
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Fig. 1. (a) Eurodollar interest rates (f;(¢)) as function of ¢ for i/ ranging from 1 to 16; (b) Eurodollar
interest rates (f;(¢)) as function of ¢ for i = 1,5, 10, 16.

maturity values, namely 0 = 3 and 48 months. Set 2 contains 34 weekly data for
different interest rates during a time period of 16 years between 1982 and 1997
recorded in the Federal Reserve (FR) Statistical Release database [12,15]. We report
their main characteristics in Appendix A. In the following we will indicate these time
series with the symbol f,(¢), where ¢ is the current date and i is a number which labels
the different time series (see Table 2). The behavior in time of these interest rates time
series, f(¢), is shown in Fig. 2, where their average f(¢) = >, f(1)/34 is also shown.
It is evident from Fig. 2 that all these data follow very similar trends in time and they
lie in a rather narrow band around 7(7).
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Table 2
Data set 2: Interest rates in the time period 1982-1997
i fi i Si i Si i fi i Si i Si
1 FED 7 FP3 13 CD6 19 TC5Y 25 TBS3M 31 ED6M
2 SLB 8 FP6 14 TC3M 20 TC7Y 26 TBS6M 32 AAA
3 CP1 9 BA3 15 TC6M 21 TC10Y 27 TBS1Y 33 BAA
4 CP3 10 BAG6 16 TCl1Y 22 TC30Y 28 TCI10P 34 CM
S CP6 11 CD1 17 TC2Y 23 TBA3M 29 EDIM
6 FPI1 12 CD3 18 TC3Y 24 TBA6M 30 ED3M
18 T T T T T T T T T
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Fig. 2. Interest rates f;(r) as function of ¢ for i=1-34 (thin gray lines) and their average §i0)
(thick black line).

3. Correlation cluster formation

We study the hierarchical structure arising from the correlations between the
interest rates fluctuations Af(r) = f,(t + Af) — f;(¢) with At =1 day for Set 1 and
At =1 week for Set 2. To this end, we compute the metric distance d; ; between the
series Af; and Af; (which is defined in [16] and used for financial time series in [1]):

di.j = \/2(1 —¢; ;) with ¢; ; the correlation coefficient among the i,j interest rates
fluctuations:
ALASY — (AFNAS
o, = AT AFAT) 0

0i0;

where the symbol (...) denotes a time average performed over the investigated time
period an g; is the standard deviation defined as

0; =

T,
> (AF () — (AN, )

1
T2 B Tl t=T,
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where T} and T, delimit the range of ¢. The correlation coefficients are computed
between all the pairs of indices labeling our interest series. Therefore we have a
16 x 16 (for Set 1) and 4 x 34 (for Set 2) symmetric matrix with ¢;; =1 on the
diagonal. By definition, ¢;; is equal to zero if the interest rates series 7 and j are
totally uncorrelated, whereas ¢;; = £1 in the case of perfect correlation/anti-
correlation. Therefore d;; can vary between 0 and 2. In order to single out the
clustering structure, we determine an ultra-metric distance d; ; which satisfies the first
two properties of the metric distance and replaces the triangular inequality with the
stronger condition: d; ;< max[d;x,d ;], called ‘ultra-metric inequality’. Once the
metric distance d;; is defined, one can introduce several ultra-metric distances.
Mantegna et al. [2-4] have used the ‘subdominant ultra-metric’, obtained by
calculating the minimum spanning tree connecting several financial time series.
As the correlations between interest rates are strong in any part of the analyzed
period, we have instead considered a different ultra-metric space that emphasizes the
cluster structure of the data [11,12]. The result of this procedure, for the 16
Eurodollars interest rates (Set 1) in the whole time period 1990-1996, tells us that the
data set is gathered into 3 main clusters: Cls; = {3,6}, Cls, = {9,12,15,18,21},
Clsy; = {24,27,...,45,48}. The first cluster(Cls,) gathers together interest rates with
maturity shorter than 1 year; Cls, contains those with maturity dates between 1 and
2 years; whereas Cls; includes those with maturity dates which are larger than 2
years. For the other 34 interest rates (Set 2) the same procedure yields to a separation
in the following clusters:

e all the interest rates with maturities equal to 1 month (CP1, FP1, CDI1, EDIM);

e all the interest rates with maturities 3 and 6 months (CP3, CP6, FP3, FP6, BA3,
BA6, CD3, CD6, ED3M, ED6M);

e Treasury securities at ‘constant maturity’ (TC), and Treasury bill secondary
market rates (TBS) with maturities 3 and 6 months (TC3M, TC6M, TBS3M,
TBS6M);

e Treasury bill rates (TBA) with maturities 3 and 6 months (TBA3M, TBA6M);

e all the interest rates with maturities between 1 and 3 years (TC1Y, TC2Y, TC3Y,
TBS1Y);

e all the interest rates with maturities larger than 3 years (BAA, AAA, TCSY,
TC7Y, TC10Y, TC30Y, TC10P).

Finally, there are also three isolated elements, namely FED, SLB and CM. In the
next section, we show how the same cluster structure obtained with the ultrametric/
linkage procedure spontaneously emerges from the planar sub-graph made by the
most correlated links.

4. Results from a 2D embedding and discussion

Here the general idea is the construction and characterization of metric graphs
(networks of specific topology and geometry) that encode relevant information
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concerning the hierarchical organization, interactions and dynamical properties of
these systems. For a set of n interest rates we can associate a point in a multi-
dimensional space to each of the n interest rates. To all pairs (i, j) a metric distance d;;
is associated and the resulting network is an nth order ‘complete graph’ (K,,). In this
construction, the length of each edge is equal to the metric distance between the two
interest rates increments in the multi-dimensional space and short distances are
associated with highly correlated rates values. The problem we are addressing is
to extract maximal information both qualitative (visual) and quantitative by
topological and geometric simplification of the complete graph, without excessive
information loss. Such simplification can be obtained by starting from the set of n
unconnected nodes and for a given genus g by connecting iteratively two nodes if and
only if the resulting graph can be embedded on an orientable surface of genus g: S,
[17]. This process will end with a maximally connected graph compatibly with the
surface genus. Here we present an application of this genus-dependent procedure to
the two sets of interest rates data (Sets 1 and 2) for the genus g = 0 case (the sphere).
In Figs. 3, 4 their 3D representations, respectively for Sets 1 and 2, are shown. In
both figures we can observe that the resulting graph on Sy is a triangulation of a
topological sphere and we can visualize the hierarchical organization of the whole
system [18]. Each node represents an interest rates and the length of each edge is the
metric distance d;; introduced in the previous section. Different colors (on line
version) have been chosen to distinguish different clusters. We have relaxed the
resulting network numerically [19,20] seeking to make all vertex angles as equal as
possible, consistently with the imposition of edge-lengths equal to d; ;. A detailed
description of this relaxation procedure is given in Appendix B. Note that both
graphs in Figs. 3, 4 contain as sub-graph the minimum spanning tree (MST) shown

Fig. 3. Three-dimensional representation of the embedding on Sy of the correlation structure of the 16
Eurodollar interest rates (Set 1). Each edge-length corresponds to the metric distance d; ;.
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Fig. 4. Three- dimensional representation of the embedding on Sy of the correlation structure of the 34
interest rates (Set 2). Each edge-length corresponds to the metric distance d; ;.
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Fig. 5. Two-dimensional representations of the minimum spanning tree (MST) with edge-lengths equal to
d; ;. (Left) MST for Set 1. (Right) MST for Set 2.

in Fig. 5. In these MST representations the systemhas also been relaxed to approach
the real distances using the same procedure as for the 3D case. The planar graphs of
Figs. 3, 4 are a natural further step from the construction of the MST. In Ref. [21],
we prove that such graphs preserve the hierarchical organization of the MST and
allow us to compute new local and global topological quantities. The embedding on
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Fig. 6. Two-dimensional Pelting representation of the graph in Fig. 3 which opens it into a topological
disk on the plane.

So gives us a clear clustering differentiation, we can see from Figs. 3 and 4 that
the clusters described in Section 3 naturally emerge from this construction. Once
we have the embedding on Sy we can project the 3D graph on the plane for a
convenient alternative visualization. This has been done by using the Pelting
Surface Operator [22] (inside the 3D Houdini package). In our case the Pelting
is constructed by cutting the surface along the MST. The result is a topological
disk, with every edge of the MST opening out into edges of the boundary. Every
edge is treated as a spring, with every point on the boundary connected to a
surrounding circular frame. The spring network is relaxed approaching as closely
as possible to metric distances to create a disc-like mesh with no overlaps.

Some deviations from actual metric distances are inevitable. The results are shown in
Figs. 6 and 7.

5. Conclusion

We have investigated the hierarchical structure of two sets of interest rates by
reducing their correlation matrices to a sub-set of relevant interactions which can be
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Fig. 7. Two-dimensional Pelting representation of the graph in Fig. 4 which opens it into a topological
disk on the plane.

mapped into a metric graph topologically embedable on a sphere. We show that such
a procedure yields structures which are naturally organized accordingly to the same
clustering structure which can be extracted from a linkage procedure over an
ultrametric distance. These graphs contain the minimum spanning tree and they can
be considered as a natural extension of the MST approach; our graphs share the
same hierarchical structure but contain more information. We note that the simplest
embedding (genus 0) reveals relations not observable with the MST technique. This
embedding procedure can be extended to surfaces of higher genus constructing in
this way networks with different degree of complexity and tunable information
content. This will introduce new investigation tools (e.g. genus versus information
content) and pose new challenges for their visualizations.
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Appendix A. Data description

Hereafter we list the different interest rates time series analyzed and their main
characteristics.

® The Federal funds rate (FED) is the cost of borrowing immediately available funds,
primarily for one day. The effective rate is a weighted average of the reported rates
at which different amounts of the day’s trading through New York brokers
occurs. The weekly data are unweighted averages of 7 calendar days ending on
Wednesday of the current week.

® The State & local bonds (SLB) consists of 20-year tax-exempt bonds, primary
market general obligation, 20 Bonds in index mixed quality. We report weekly
data ending on Thursday.

® The Commercial Paper (CP) and the Finance Paper placed directly (FP) [23] are
unweighted averages of offering rates, reported each business day to the FR Bank
of New York, on commercial paper placed by several leading dealers for firms
whose bond rating is AA or the equivalent and on paper directly placed by finance
companies. The symbols CP1, CP3, CP6 stand for maturity dates of 1, 3 and 6
months.

® The Bankers acceptances (BA) rates are representative of the closing yields for each
business day as obtained from dealers by the FR Bank of New York. They are
short-term negotiable time drafts or bill of exchange drawn on and accepted by a
bank on behalf of its customers. The BA3 rates refer to a maturity date equal to 3
months and the BA6 to a maturity date equal to 6 months. These last are trading
rates for the best rated money center banks.

® The rate on certificates of deposit (CD) is a simple average of dealer rates on
negotiable certificates of deposit nationally traded in the secondary market. These
rates CD1 (maturity date = 1 month), CD3 (maturity date = 3 months) and
CD6 (maturity date = 6 months) are determined for each business day.

® The yields on Treasury securities at ‘constant maturity’ (TC) are interpolated by the
US Treasury from the daily yield curve. This curve, which relates the yield on a
security to its time to maturity, is based on the closing market bid yields on
actively traded Treasury securities in the over-the-counter market. These market
yields are calculated from composites of quotations obtained by the FD Bank of
New York. The constant maturity yield values are read from the yield curve at
fixed maturities, currently 3 and 6 months (TC3M, TC6M) and 1, 2, 3, 5, 7, 10,
and 30 years (TC1Y-TC30Y).

® The Treasury bill rates (TBA) are weekly averages computed on an issue-date basis
[24]. The Treasury bill secondary market rates (TBS) are the averages of the bid
rates quoted on a bank discount basis by a sample of primary dealers who report
to the FR Bank of New York. The rates reported are based on quotes at the
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official close of the US Government securities market for each business day. They
have maturities of 3 and 6 months (TBA3M, TBA6M, TBS3M, TBS6M) and 1
year (TBS1Y) [25].

® The Treasury long-term bond yield (TCIOP) are the unweighted average of
yields on all issues of bonds outstanding which are neither due nor callable in
less than 10 years. It represents yield on US Treasury bonds with maturity over
10 years.

® The Eurodollar interbank interest rates (ED) are bid rates with maturity dates 1, 3
and 6 months (EDIM, ED3M, ED6M), respectively.

® The Corporate bonds Moody’s seasoned rates (AAA, BAA) are average yield to
maturity on selected long-term bonds.

® The Conventional mortgages rates (CM) are contract interest rates on commit-
ments for fixed-rate first mortgages.

Unless differently stated, we report weekly data ending on Friday, obtained from
unweighted averages of daily data.

Appendix B. Network relaxation procedure

The numerical code we use to relax the generated networks runs as follows. The
initial network geometry consists of a set of vertices placed at random in Cartesian
space (x;,¥;,z;) [20,26]. That initial structure is then ‘relaxed’ by motion under the
influence of a vector force on each n-connected vertex. Those forces are calculated by
the gradient of the (elastic) energy function. We adopt the following form for the
energy:

E= Eangle + Elength (Bl)
with:
n(n—1)/2
Eage =k Y (x— 05 (B.2)
ij, k=1
and
n
Etengin =k Y (05— dij)* (B.3)

i j=1

where kj, k; denote the elastic moduli for equalizing angles and edges respectively
and d;; denotes the rest spring length. The indices i, j, k label the vertices. O
denotes the angle (centered on vertex 7) subtended by the three (edge-linked) vertices
i, j, k of magnitude:

(B.4)

O+ 65, — 0
O = arc cos <”'k]k ,

25,0
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where J;; denotes the distance of the vector joining vertices / and j:

8=/ — )P + 0 — 3P + (5 — =) (B.5)

The force acting on each n-connected vertex is the gradient of E respect to x;, y;, z;:
dE dE dE

Fo=——;, F,=——; F.= (B.6)

dx;” TN T dy, Sz

In order to minimize the energy, the position of the vertices changes by an amount
proportional to these forces:

dy;oc Fy; dy;oc F) ;3 dzyoc Fo . (B.7)

In practice, the magnitudes of the elastic moduli are tuned to ensure convergence to a
final configuration with all edges of length equal to d; ; and angles as nearly equal as
possible.
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