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Abstract

The extraction of relevant and meaningful information from large streams of data has become one of the major
challenges for scientists working in the field of complex systems. In particular, one of the main goals is to get information
about the underlying system of interactions that leads to complex collective dynamics. In this paper, we discuss how a set
of relevant interactions can be extracted from the analysis of the cross-correlation matrix. We show that an active and
adaptive correlation filtering procedure can be associated to the dynamics of a network which is a sort of ‘hyper-molecule’
warped on a D-dimensional unitary sphere.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the correlations is one of the main instruments in the study of the collective behavior of a
system comprised by many elements. In general, the goal is to extract a structure of relevant interactions which
give information about the collective properties of the system under investigation. However, the extraction of
information from the observed correlations is not straightforward. Schematically, one can point out two
major challenges. The first challenge consists in the fact that, for finite time series, random fluctuations can
generate spurious correlations, making uncorrelated events to appear correlated and vice versa [1]. Therefore,
the correlation structure needs to be ‘undressed’ from the ‘dressing’ noise contribution [2—4]. The second major
challenge is associated to the fact that there is a correlation coefficient for any couple of elements in the
system, whereas one aims to extract only a ‘backbone skeleton’ containing a few relevant interactions.
Therefore, the correlation structure needs to be ‘filtered’, eliminating the less-relevant and redundant
information [5-8].

In this paper, we present and discuss some approaches to extract the underlying structure of relevant
interactions from cross-correlations. In particular, in Section 2, we discuss a direct (but unsatisfactory)
method to associate a system of interactions to the correlation matrix. In Section 3, the difficulties associated
with the previous method are overcome by adopting a geometrical interpretation of the correlation structure.
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Such a geometrical approach is used in Section 4 where a system of interactions is constructed directly from
the set of correlations. Conclusions and discussions are given in Section 5.

2. Interactions from correlations
Let us consider a cross-correlation matrix C (calculated—for instance—from a system of N financial time

series over a given time period) and let us show how to associate to this correlation a system of N elements
which interact with exchange coefficients J;;:

N
Ul({r}):ZViJi,jrja (1)

ij=1
where r; € R (with i =1,..., N) are the values of the ‘instantaneous states’ of the system of N interacting
‘agents’. The quantity U] is a ‘cost’ or an ‘energy’ associated with each state {r} = (ry,r2,...,7,...,ry) of the

system. The most probable distribution for the values {r} corresponding to a given average cost, can be
obtained by maximizing the system’s entropy (S = _Z[r} P({r})In P({r})) while constraining the average cost,
yielding to the following probability distribution: P({r}) = p,exp[—fU:({r}) (where p, is a normalization
constant and f is a Lagrange multiplayer fixed by the average cost). From this expression for the probability
distribution, it can be calculated that an exchange matrix with coefficients

N )

Jy=(C Ny =3 —5 2

v=1

(with A" the vth eigenvalue of C and efY’ is the ith component of the vth eigenvector of C) yields to cross-
correlation coefficients C;;.

From this result it appears that a set of interactions (i.e. J;;) can be always and uniquely extracted from any
given (strictly positively defined) correlation matrix. Unfortunately, the resulting system of interactions is not,
in general, reflecting the important interactions in the underlying system. Indeed, by looking at Eq. (2), one
can note that the exchange coefficients J;; are weighted with the reciprocal eigenvalues of the original
correlation matrix: 1 /)L(‘”. This implies that the small eigenvalues dominate the structure of the interactions.
On the other hand, small eigenvalues are strongly affected by the noise [1]. Therefore, in many practical
cases, J;; is dominated by the noise and the most part of the relevant information is hidden by the ‘dressing’
noise [2,3].

As a meaningful simple example let us discuss here the case of correlations between the fluctuations in time
of 16 Eurodollar interest rates with different maturity dates. These correlations have been the subject of
several investigations with various techniques reported in previous papers by the authors [6,7,9]. They
therefore are good candidates for a comparative analysis.

In Fig. la is reported the minimum spanning tree (MST) constructed by connecting together the most
correlated couples while constraining the resulting graph to be a tree (no closed loops). As one can see, the
result is a rather simple structure of interactions with the small maturity dates (from 3 months to 2 years) that
‘line’ up in increasing order, followed by only a few re-arrangements and branching at large maturity dates
(between 2 and 4 years).

By construction, the correlation coefficients can be always written as the following sum:
Cij=N 1,1‘“>e§”>e]("), which brings in evidence the contribution from each eigenvalue A'. The large
eigenvalues are the ones that contribute most. Whereas, the small eigenvalues are the most affected by
random, information-less, fluctuations. Indeed, it has been calculated that a set of N independent,
uncorrected, random series of length 7T, produces correlation matrices with small off-diagonal entries and
eigenvalues distributed in a narrow range around 1 with extremes: A" =1+ N/T £ 2,/N /T [1]. It has been
argued that in financial data, most of the observed eigenvalue’s spectrum is associated with noise and only a
few large eigenvalues are instead associated with collective properties of the system [2,3]. Therefore, it appears
that, to retrieve relevant information, it is necessary to ‘undress’ the observed correlations from the noise part
[4] by removing the contribution from the small eigenvalues. For instance, for the Eurodollars interest rates,
we find that there are only two eigenvalues which are larger than 0.5. In Fig. 1b it is shown the MST
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Fig. 1. (a) Minimum spanning tree (MST) constructed by connecting the most correlated couples (largest C;;). (b) MST from the
contribution corresponding to the two largest eigenvalues.
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Fig. 2. (a) Minimum spanning tree constructed by joining together the most negative interactions J;;. (b) MST from the contribution to J
associated with the two largest eigenvalues.

constructed from the correlation matrix recalculated by keeping the contributions from the first and the

second eigenvalue only (C(-j) = Ele/l(")egv)e](-") / \/ Zle/I(”)[egv)]ZZle)b(”)[e](v)]z). As one can see this component

l

reveals a simpler structure: all the interest rates are now aligned by maturity dates.

Let us now analyze how the correlation structure is ‘reflected’ in the structure of the interactions. It is easy
to see that large negative values of the exchange coefficient J;; must be associated with elements that tend to
fluctuate synchronous (a ‘ferromagnetic’ interaction), whereas large positive values of the J;; must be
associated with a-synchronous anti-correlated variables, and small or zero coefficients should correspond to
non-interacting elements. A schematic view of the resulting interactions can be visualized by constructing the
MST associated with the most negative interactions. Such a tree, shown in Fig. 2a, can be compared with the
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one in Fig. la. As one can see the results are quite different. Similar analysis performed on more complex set of
data such as the 100 US stocks described in Refs. [5,8] show that indeed the two analysis produce very
different outputs.

Let now see whether such differences might be a consequence of the dressing noise and let us understand if
there is a way to construct a system of interactions among the N agents which correctly reflects the structure of
the undressed correlations. A straightforward approach cannot be adopted. Indeed, the undressed correlation
matrix has several zero eigenvalues and it cannot be inverted. From the principal component analysis we know
that the large eigenvalues are the ones that most contribute to C. In a similar way, also the interaction is made
of a sum of terms, each corresponding to the contribution from each eigenvalue: J;; = S0 lef")eﬁ") /A Tt
seems therefore reasonable to construct an undressed interaction matrix by keeping only the contribution to J
from the largest A*). The resulting MST for v = 1 and 2 is shown in Fig. 2b. As one can see, the resulting
hierarchical structure is rather different from the ones for J and C. The question is whether or not these
structures of interactions are meaningful. A careful analysis on these and other cross-correlation data (such as
the 34 US interest rates or 100 US stocks studied in Refs. [5-8]), seems to indicate that such structures do not
reflect any known property of the market.

It appears therefore that a simple interpretation of the observed data in terms of a system of interacting
elements described by Eq. (1) is not adequate and it fails in catching the essential features associated with these
systems. On the other hand, the idea of being able to model and analyze the complex dynamics of such systems
in terms of simple interactions between elements is intriguing. Therefore, in the following we discuss an
alternative approach which can provide such a description.

3. Interactions in D-dimensions

Let us here adopt a geometrical perspective to understand how, in general, a structure of interactions can be
extracted from a cross-correlation matrix C.

From a geometrical perspective, the cross-correlation among N time series r;(¢), with i=1,...,N and
t=t,...,tr, are the scalar products between N unit vectors in a T-dimensional Euclidean space: C;; = vit;,
where 7; are standardized series with zero mean and unitary variance (i.e. unitary vectors in R7).

We want to start from a given correlation matrix C and search for a corresponding representation as a
system of N unitary vectors #; in a D-dimensional space. Of course, the original time series (opportunely
standardized), is a solution in D = T, but there are an infinite number of other possible solutions that we want
to explore. The first problem to address is to find a suitable space dimension D where one can place the N
vectors 7; in such a way that they stay at relative distances d;;. In terms of information content, it is clear that
if the rank of the correlation matrix is equal to &V, then one needs at least V dimensions to construct such a set
of vectors. Actually, there is a known construction that allow us to realize such a system exactly in N
dimensions. This is done from the following vectors:

ﬁ,-:( i(l)ef.l), /1(2)635-2),..., /I(N)eEN)), (3)

which correctly gives: 7l = > l)»(v)eg")e](") = C;;. The system’s collective dynamics is in this way reduced to
the study of the relative trajectories of N points on a N-dimensional unit sphere. The general goal is then to
extract from such a structure some relevant patterns which are robust and persistent.

However, this requires the analysis of the dynamics of N points in a space of dimensionality larger or equal
than N. In order to simplify the problem the dimensionality of space must be further reduced. This is possible
if we release some of the constraints by performing a correlation filtering.

4. Correlation filtering

The topological structure associated to such system of correlations is a complete graph where each node is
connected with every other node. The corresponding geometrical structure is an irregular simplex (triangle in
2D, tetrahedron in 3D, etc.) with vertices constrained on the surface of a unitary sphere and with edge lengths

equal to d;j = 4/ (7; — E})2 = /2(1 — C;;). We know that such a structure can be realized in N dimensions.
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However, for many practical purposes, correlations still retain an excessive amount of information and several
tools have been developed to filter out the redundancies and keep the essential features that characterize the
systems properties [6-8].

A straightforward possibility is to keep only the contribution from the D< N largest eigenvalues. This leads

to the following set of unit vectors: ﬁgD) = LYED)/IQ’?DH with EéD) =( )u(l)eﬁl), )@eﬁz), sV A(D)egD)). Projecting
in this way the effective dimension from N to D. Another possibility consists in the production of a surrogate
correlation matrix where only a sub-set of relevant coefficients are kept. From a geometrical perspective, such
a correlation filtering consists in removing the constraint associated with the relative distance between the
corresponding elements. Doing so one reduces the number of constraints and consequently one should be able
also to reduce the space-dimensionality.

A correlation filtering generated by retaining only the essential links is unsatisfactory from a geometrical
point of view. Indeed, in such a construction all the elements which are not connected in the filtered
framework can eventually stay at any relative distance. The result is that in some cases, couples of elements
that are weakly correlated and not connected in the filtered correlation network might result at very close
distances acting in this representation as highly correlated bonds. Therefore, the proper representation,
associated with a good correlation filtering, must meet two main criteria: (1) all the elements which are
connected in the filtered system of correlations must stay at a distance which is as close as possible to
v/2(1 = Cy); (2) all the unconnected couples must not stay too close.

Finding the right position: Let us address the general problem of placing at the right relative distance a set of
N elements in a multidimensional space. This problem can be studied in terms of a dynamical model where an
interaction between connected nodes is introduced by using ‘springs’ with rest lengths equal to the distances
d;;. This corresponds to the following energy:

2
Us = ZKi,in,j<\/ (7i; — 7i)* — du) ) “4)

ij>i

where A4;; is the adjacency matrix (4;; = 1 if (i,/) are connected, A4;; = 0 otherwise). Whereas K;; >0 are the
spring constants.

The energy U, is minimized when all the connected points stay at the ‘right’ distances d;;. But, unconnected
points can stay at arbitrary relative positions. In order to keep separate unconnected points, on can think in
terms of packing of rigid bodies: connected couples (4;; = 1) should stay at the right distances d;;, whereas
unconnected couples (4;; = 0) must stay at distances larger or equal to ¢;; = max {d;,d;x}. This can be
enforced by introducing the additional Lennard—Jones term in the energy:

U LA O'i]- ° 0'121,' ’ 5
=y (%) (@ 25) | §

ij>i

with /; ;>0 the coupling constants. In this way, the unconnected nodes are treated as atoms with a long-range
attraction and a short-range repulsion which becomes very strong at distances around or below o;;. The whole
system is now an hyper-molecule in R? folded on the surface of a unit sphere. The space dimension D is, so
far, arbitrary. Indeed a relaxation dynamics can be implemented in any dimension. However, larger is the
space-dimensionality, higher are the degrees of freedom and therefore higher are the possibilities to find a
configuration which minimizes the energy. On the other hand, the computational weight increases linearly
with D and systems under-constrained lead to multiple solutions. The optimal protocol should be a balance
between geometrical frustration and the computational attainability.

We can further generalize the procedure by introducing elementary topological moves (such as edge-
switching 7/ or addiction and removal of edges [10,11]). Such moves modify the adjacency matrix and
accordingly the energy. A Monte Carlo simulation, Glauber dynamics [12] should drive the system towards a
global equilibrium. The introduction of topological moves transforms these dynamical geometrical
constructions into active correlation filtering procedures. A straightforward advantage of such filtering is
that any resulting filtered matrix C’,"llt = n;ii; is always a proper correlation matrix with rank equal to D
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(indeed, by definition, any matrix constructed as a scalar product of a set of vectors is positively defined and
vice versa).

5. Discussion and conclusions

In this paper, we have discussed some possible methodologies for modeling, representing and filtering the
structure of correlations among N interacting elements. In Section 3, we have shown that a simple quadratic
modeling of interactions (Eq. (1)) does not catch the essential features of such systems leading to a network of
interactions which does not seem to reflect any known property of the underlying system. On the other hand, it
is known that the correlation structure is associated with meaningful properties of the system [5—8]. Therefore,
in Section 4 we have developed a geometrical method that will produce the correct correlation structure by
keeping the relevant interactions. The great advantage of this approach is that it does not involve the inversion
of the correlation matrix and therefore, differently from the first method, it is not prone to the effect of small
eigenvalues and, consequently, noise. However, to exactly reproduce the original correlation matrix, such a
method requires a space dimensionality larger or equal than N. A correlation filtering (Section 4) can then be
used to reduce the space-dimensionality while keeping the relevant structure of interactions. In this respect the
geometrical representation of the first approach (Section 3) corresponds to a geometrical embedding on a
circle (one degree of freedom per element) which eventually implies that only the structure associated with the
two largest eigenvalues (D = 2) might be recovered. We have shown in Section 4 that the reduction of
dimensionality can be done in two ways. The first method consists in projecting the set of N points, which
represents the system in N dimensions, into a subspace of lower dimensionality D. This method, is the
geometrical analogous of the principal components analysis. The second method is more elaborated and
consists in the creation of a set of interactions which maps the system of correlations into a sort of hyper-
molecule warped on a D-dimensional unitary sphere. A dynamics of elementary moves that attaches, detaches
and switches bonds in such an hyper-molecule will correspond to an active and adaptive correlation filtering
procedure. The study of the dynamics of such hyper-molecule is left to future work.
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