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Abstract

In this paper we tackle the problem of estimating the power-law tail exponent of income distributions by using the Hill’s

estimator. A subsample semi-parametric bootstrap procedure minimizing the mean squared error is used to choose the

power-law cutoff value optimally. This technique is applied to personal income data for Australia and Italy.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since Pareto it has been recognized that a power-law provides a good fit for the distribution of high
incomes [1]. The Pareto’s law asserts that the complementary cumulative distribution P4ðyÞ ¼

1�
R y

�1
pðxÞdx! P4ðuÞðu=yÞa, with yXu, where u40 is the threshold value of the distribution and a40

turns out to be some kind of index of inequality of distribution. The fit of such distribution is usually
performed by judging the degree of linearity in a double logarithmic plot involving the empirical and
theoretical distribution functions, in such a way that the estimation of u of the distribution does not seem
to follow a neutral procedure. Moreover, recent studies have criticized the reliability of this geometrical
method by showing that linear-fit based methods for estimating the power-law exponent tend to provide
biased estimates, while the maximum likelihood estimation method produces more accurate and robust
estimates [2,3]. Hill proposed a conditional maximum likelihood estimator for a based on the k largest
order statistics for non-negative data with a Pareto’s tail [4]. That is, if y½n�Xy½n�1�X � � �Xy½n�k�X � � �Xy½1�,
with y½i� denoting the ith order statistic, are the sample elements put in descending order, then the Hill’s
estimator is

ânðkÞ ¼
1

k

Xk

i¼1

ðlog yn�iþ1 � log yn�kÞ

" #�1
, (1)
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where n is the sample size and k an integer value in ½1; n�. Unfortunately, the finite-sample properties of the
estimator (Eq. (1)) depend crucially on the choice of k: increasing k reduces the variance because more data are
used, but it increases the bias because the power-law is assumed to hold only in the extreme tail.

Over the last 20 years, estimation of the Pareto’s index has received considerable attention in extreme value
statistics [5]. All of the proposed estimators, including the Hill’s estimator, are based on the assumption that
the number of observations in the upper tail to be included, k, is known. In practice, k is unknown; therefore,
the first task is to identify which values are really extreme values. Tools from exploratory data analysis, as the
quantile-quantile plot and/or the mean excess plot, might prove helpful in detecting graphically the quantile
y½n�k� above which the Pareto’s relationship is valid; however, they do not propose any formal computable
method and, imposing an arbitrary threshold, they only give very rough estimates of the range of extreme
values.

Given the bias-variance trade-off for the Hill’s estimator, a general and formal approach in determining the
best k value is the minimization of the Mean Squared Error (MSE) between ânðkÞ and the theoretical value a.
Unfortunately, in empirical studies of data the theoretical value of a is not known. Therefore, an attempt to
find an approximation to the sampling distribution of the Hill’s estimator is required. To this end, a number of
innovative techniques in the statistical analysis of extreme values proposes to adopt the powerful bootstrap
tool to find the optimal number of order statistics adaptively [6–9]. By capitalizing on these recent advances in
the extreme value statistics literature, in this paper we adopt a subsample semi-parametric bootstrap algorithm
in order to make a reasonable and more automated selection of the extreme quantiles useful for studying the
upper tail of income distributions and to end up at less ambiguous estimates of a. This methodology is
described in Section 2 and its application to Australian and Italian income data [10,11] is given in Section 3.
Some conclusive remarks are reported in Section 4.

2. Estimation technique for threshold selection

In this section, we consider the problem of finding the optimal threshold u�n—or equivalently the optimal
number k� of extreme sample values above that threshold—to be used for estimation of a. In order to achieve
this task, we minimize the MSE of the Hill’s estimator (Eq. (1)) for a series of thresholds un ¼ y½n�k�, and pick
the un value at which the MSE attains its minimum as u�n. Given that different threshold series choices define
different sets of possible observations to be included in the upper tail of a specific observed sample
yn ¼ fyi; i ¼ 1; 2; . . . ; ng, only the observations exceeding a certain threshold that are additionally distributed
according to a Pareto’s cumulative distribution function PDânðkÞ;un ðyÞ are included in the series. In order to
check this condition, we perform for each threshold in the original sample a Kolmogorov– Smirnov (K– S)
goodness-of-fit test for the null hypothesis H0 : F̂ nðyÞ ¼ PDânðkÞ;un ðyÞ versus the general alternative of the form
H1 : F̂ nðyÞaPDânðkÞ;un ðyÞ, where F̂ nðyÞ is the empirical distribution function, and ânðkÞ is a prior estimate for
each threshold un of the Pareto’s tail index obtained through the Hill’s statistic. Following the methodology in
[12], the formal steps in making a test of H0 are as follows:
(a)
 Calculate the original K– S test statistic D by using the formula

D ¼ sup
�1oyo1

jF̂ nðyÞ � PDânðkÞ;un ðyÞj.
(b)
 Calculate the modified form T� by using the formula

T� ¼ D
ffiffiffi
n
p
þ 0:12þ

0:11ffiffiffi
n
p

� �
. (2)
(c)
 Reject H0 if T� exceeds the cutoff level, z, for the chosen significance level.
To obtain an estimate of finite-sample bias and variance (and thus MSE) at each threshold coming from the
null hypothesis H0, a natural criterion is to use the bootstrap [13]. In its purest form, the bootstrap involves
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approximating an unknown distribution function, F ðyÞ, by the empirical distribution function, F̂ nðyÞ.
However, most times the empirical distribution model from which one resamples in a purely non-parametric
bootstrap is not a good approximation of the distribution shape in the tail. Therefore, we initially smooth the
tail data by fitting a Pareto’s cumulative distribution function

PDânðkÞ;un ðyÞ ¼ p ¼ 1� P4ðunÞ
un

y

� �ânðkÞ

(3)

to the n1pn observations yn1
¼ fy 2 yn : T�pzg, and then use the quantiles yp

n1
¼ fy 2 yn1

: PDânðkÞ;un ðyÞXpg

obtained directly from inverting the estimated model (Eq. (3)) to draw the bootstrap samples.
Let us here summarize the adopted methodology:
(1)
 Evaluate the estimate ânðkÞ of the Pareto’s tail index for each threshold in the original sample yn by using
the Hill’s estimator (Eq. (1)).
(2)
 For each threshold in the original sample, test the Pareto’s approximation by computing the value of the
K– S test statistic (Eq. (2)).
(3)
 Fit the model (Eq. (3)) to the subset of data yn1
belonging to the null hypothesis H0.
(4)
 Select R independent bootstrap samples y#1 ; y
#
2 ; . . . ; y

#
R, each consisting of n1 values drawn with

replacement from the set of quantiles yp
n1

obtained by inverting the fitted model (Eq. (3)).

(5)
 For each bootstrap sample y#r , r ¼ 1; 2; . . . ;R, and for each threshold u#n1 in the bootstrap sample, evaluate

the bootstrap estimate â#n1 ðk1Þ of the Pareto’s tail index by using the Hill’s estimator (Eq. (1)).
#
(6)
 For each threshold u#n1

, calculate the bias, B ¼ E½ân1
ðk1Þ� � ânðkÞ,the variance, Var ¼

Ef½â#n1 ðk1Þ�
2g � fE½â#n1 ðk1Þ�g

2, and the mean squared error, MSE ¼ B2 þ Var, of the Hill’s tail index
estimates.
(7)
 Select as the optimal threshold u�n ¼ y½n�k�� that threshold where the MSE attains its minimum.
Minimizing the MSE, thus, amounts to find the MSE minimizing number of order statistics
k� ¼ argmink MSE, from which one infers the optimal estimate of the tail index â�nðk

�
Þ.

3. Empirical application: the Australian and Italian personal income distributions

The data sources we use to illustrate how the methodology proposed in Section 2 can be applied to the
analysis of income distributions have been selected from the nationally representative cross-sectional data
samples of the Australian and Italian household populations. In particular, we have analyzed the total annual
income from all sources in the years 1993–1994 to 1996–1997, and then in 1989–1990, 1998–1999, 1999–2000,
and 2001–2002 for Australia, and 1977–2002 for Italy [10,11,14]. Here we report only the results in the year
1999–2000 for Australia and 2000 for Italy.
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Fig. 1. Modified K– S statistic (Eq. (2)) as a function of the tail size for (a) Australia in 1999–2000 and (b) Italy in 2000.



ARTICLE IN PRESS
F. Clementi et al. / Physica A 370 (2006) 49–5352
Figs. 1(a) and (b) depict the outcomes of the complete sequences of K– S test for a selection of tail fractions.
Blue points (see on line version) mark all the observations for which the modified K– S statistic (Eq. (2)) does
not exceed the 5% cutoff level z ¼ 1:358 (solid lines in the figures). The 5% significance point z ¼ 1:358 comes
from Table 1A in Ref. [12]. The figures indicate the tail regions that may be tentatively regarded as appropriate
for the implementation of the semi-parametric bootstrap technique.

The Hill’s estimator (Eq. (1)) is reported in Figs. 2 for Australia (a) and Italy (b), and for tails p20% and
p25% of the full sample size, respectively (see solid lines). In these figures, the optimal number of extreme
sample values are reported, namely k� ¼ 299 for Australia and k� ¼ 3222 for Italy, providing the following
values for the tail power-law exponents: â�nðk

�
Þ ¼ 2:3� 0:2 and â�nðk

�
Þ ¼ 2:5� 0:1, where the errors (with 95%

confidence) have been obtained through the jackknife method [15]. In these computations, we have used 1000
resamples and the subsample size has been set equal to the number of observations not rejected by the K– S

test at the 5% level (see Section 2 and Figs. 1 (a) and (b)). Repeated calculations with a different number of
replications produce a spread of tail index estimates with deviations inside the 95% uncertainty band (dashed
lines in the figures), showing therefore numerical robustness of our results. We have here obtained more
precise values of the power-law tails than the previous one reported in the literature [11].

The use of these â�n optimal values produces the fits shown by the solid lines in Figs. 3 (a) and (b) for
Australia and Italy, where the complementary cumulative distributions are plotted on a log–log scale. The
vertical dashed lines indicate the optimal values of the threshold parameter attained by subsample semi-
parametric bootstrapping: (a) u�n ¼ $ 82367 for Australia in 1999–2000 and (b) u�n ¼ h19655 for Italy in 2000.
As we can see, our procedure succeeds in avoiding deviations from linearity for the largest observations that
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Fig. 2. The Hill’s estimator (Eq. (1)) for (a) Australia in 1999–2000 and (b) Italy in 2000. The dashed lines represent the 95% confi-
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Fig. 3. Complementary cumulative distribution (a) for Australia in 1999–2000 and (b) for Italy in 2000 and power-law fits by using the

estimated optimal values for a.
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might strongly influence the estimation of a, illustrating therefore the importance of optimally choosing the
tail threshold.

4. Concluding remarks

In this paper, we have considered the problem of the estimation of the power-law tail exponent of income
distributions and we have adopted a subsample semi-parametric bootstrap procedure in order to arrive at less
ambiguous estimates of a. This methodology has been empirically applied to the estimation of personal
income distribution data for Australia and Italy. The reliability and robustness of the results have been tested
by running different repeated bootstrap replications and comparing the variability of the estimates through a
jackknife method.

From the economic point of view, this technique for the estimation of the Pareto’s tail index of income
distribution is expected to allow a deeper understanding of both the way in which cyclical fluctuations in
economic activity affect factor income shares and the channels through which these effects work through the
size distribution of income, which are issues of relevance for the modeling of the income process in the high-
end tail of the distribution.
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