
Extracting the correlation structure by means of planar
embedding

T. Di Matteo and T. Aste

Department of Applied Mathematics, Research School of Physical Sciences, The Australian
National University, 0200 Canberra, ACT, Australia.

ABSTRACT

The hierarchical structure of correlation matrices in complex systems is studied by extracting a significant sub-set
of correlations resulting in a planar graph. Such a graph has been generated by a method introduced in Aste et
al.1 and it has the same hierarchical structure of the Minimum Spanning Tree but it contains a larger amount of
links, loops and cliques. In Tumminello et al.,2 we have shown that this method, applied to a financial portfolio
of 100 stocks in the USA equity markets, is pretty efficient in filtering relevant information about the system
clustering revaling the hierarchical organization in the whole system and within each cluster. Here we discuss
this filtering correlation procedure and its application to different financial data sets.
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1. INTRODUCTION

The correlation matrix is a powerful instrument to describe the collective behavior of systems comprised of many
elements. However in many practical cases it turns out that the information in the whole correlation matrix
is too detailed, making difficult to extract the essential features associated with the collective properties of the
system. Indeed, correlation coefficients are associated to all the pairs of elements in the system. The challenge is
to extract the smallest sub-set of such correlations which is able to describe accurately the collective behavior of
the whole system. The correlation matrix can be represented -topologically- by the complete graph (each node
connected with all the other nodes) with edges weighted by the value of the correlation coefficient. The problem
of extracting a system of meaningful interactions can be therefore translated into the problem of reducing the
complete graph into a sub-graph which keeps only the edges which best describe the system of interactions.
Such a sub-graph must contain the maximum amount of information about the system’s collective behavior
while keeping the simplest possible structure. It was shown in Ref.3 that a method to investigate correlations
in financial systems consists in extracting a minimal set of relevant interactions associated with the strongest
correlations belonging to the Minimum Spanning Tree (MST). The MST maintains only the minimum number
of links necessary to connect the network (n− 1 links for a network with n nodes) and, by construction, it keeps
the links associated with the strongest correlations. This method turns out to be very effective in revealing the
hierarchical structure contained in the correlation matrix. However, the reduction to a minimal skeleton of links
is necessarily very drastic in filtering correlation based networks loosing therefore valuable information.

Since the MST method has been proved to be very effective in extracting hierarchies from the correlation
matrix, its extension to a richer graph must be constructed in a way to maintain such a hierarchical skeleton
while including a larger amount of links. A solution to this problem is a new technique which enables to produce
networks with tunable information content.1, 2, 4 This method is based on the idea of connecting iteratively the
most correlated nodes while constraining the resulting network to be embedded on a given surface.

We here show some of the results of the application of this filtering procedure to the correlation matrix of
16 Eurodollar Interest Rates,5 34 different kinds of interest rates in money and capital markets4, 6 and 100 US
stocks.2

The paper is organized as following: in Section 2, we present the general idea regarding the embedding of the
complete graph on hyperbolic surfaces and we discuss the case of planar embeddings by considering the Planar
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Maximally Filtered Graph (PMFG) introduced in Ref..1, 2 Section 3 shows results for different sets of financial
data and it analyzes and discusses the emergent clique structure.

2. NETWORKS RESULTING FROM THE CORRELATION MATRIX

Consider a system of n interacting elements which are collectively fluctuating in a stochastic way. In first place,
these mutually-related stochastic variables can be considered all connected to each other in an n-th order complete
graph (Kn). A weight can be associated to each link and a natural choice for the weight of a link between node i
and node j is the correlation coefficient ci,j . The challenge is to locally simplify the network by keeping only the
most significant interactions (largest correlations) and simultaneously extracting global information about the
hierarchical organization of the whole system. Hereafter we show that a very powerful way to proceed is to map
the complete graph into a significant sub network on a 2-dimensional (2D) hyperbolic surface. This approach has
several attractive features: 1) it provides new measures to characterize complexity; 2) it gives a locally-planar
representation; 3) it provides a hierarchical ensemble classification; 4) it allows the application of topologically
invariant elementary moves.1, 7–9 In addition, let us stress that any network can be embedded on a surface,
therefore this approach is completely general and the genus of the embedding surface acts as a constraint on the
complexity of the network. Indeed, Ringel and Youngs have shown that an embedding of Kn is always possible
in an orientable surface Sg of genus10

g ≥ g∗ = d (n− 3)(n− 4)
12

e (1)

(for n ≥ 3 and with dxe the ceiling function which returns the smallest integer number ≥ x). Therefore, providing
a sufficiently high genus g ≥ g∗, we can always generate embeddings that contain the whole information present
in the complete graph. Such a reduction to 2D cannot be in general implemented simply on the plane. Indeed,
the complexity of the surface will increase with the complexity of the graph and multi-handled hyperbolic surfaces
must be used (for n > 7 one has g∗ > 1, and hyperbolic surfaces are needed to embed the complete graph).

The embedding of the complete graph on Sg is locally planar but this local simplification has been achieved
at the expenses of an high complexity in the global surface (g∗ scales with n2). A reduction to simpler surfaces
with lower genus is therefore necessary. This can be done only by removing some of the n(n− 1)/2 links of Kn

transforming the complete graph into a less connected network. For instance, the opposite extreme to Kn is
the spanning tree which is the connected graph with minimum number of links (n− 1) and it can be embedded
on a surface of genus g = 0 (the sphere). Let us now discuss an algorithm1 which allows to generate networks
embedded on surfaces with arbitrary genus and we analyze in details the case g = 02 .

Starting from a correlation coefficient matrix, we construct a graph G embedded on a surface Sg of genus g
by means of the following procedure: from a set of disconnected elements, by following an ordered list of pair of
elements sorted in decreasing order of the correlation coefficient between two elements, we connect two elements
if and only if the resulting network can still be embedded on Sg. Elsewhere the two elements are left disconnected
and the subsequent pair in the list is considered. It is important to stress out that this construction is analogous
to the procedure which generates the MST. Indeed, the only difference between the two procedures is that in
the case of MST a link is inserted if and only if the network after such connection is a forest or a tree.

It has been proved in Tumminello et al.2 that at any step of construction of the MST and graph G of genus
g if two elements are connected via at least one path in one of the considered graphs then they are connected also
in the other one. This fact implies that the MST is always contained in G. Moreover, this also implies that the
formation of connected clusters of nodes during the construction of a graph G coincides with the formation of
the same clusters in the MST at the same stage of the construction. In other words the hierarchical structure
associated to G coincides with the one of the MST at any stage of the construction.

The graph G of genus g is the most connected graph for a given embedding Sg and number of nodes n. The
graph G is a triangulation of Sg. It has 3(n − 2 + 2g) (for g ≤ g∗) links and the addition of a further link
is impossible without edge-crossings or the increase of the surface genus. A special case is the PMFG2 which
corresponds to g = 0, i.e. to a planar embedding.11 This is the simplest embedding and coincides with the one
for the MST. In this respect, the MST and the PMFG are the two extreme cases having the same topological
complexity but having the minimum (n− 1) and the maximum (3n− 6) number of links respectively.
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Figure 1. Planar representation of the embedding on S0 of the PMFG of the 16 Eurodollar interest rates. The labels
correspond to the maturity dates expressed in units of 3 months.

The main structural difference between the PMFG and the MST is that the PMFG allows the existence of
loops and cliques. A clique of r elements (r-clique) is a complete subgraph that links all r elements. Only cliques
of 3 and 4 elements are allowed in the PMFG. Indeed, topological constraints expressed by the Kuratowski’s
theorem11 do not allow cliques with a number of elements larger than 4 in a planar graph. Larger cliques can
only be present in graphs with genus g > 0 and the larger the value of g the larger is the number of elements r

of the maximal allowed clique (specifically r ≤ 7+
√

1+48g
2 ).12

3. STUDY OF THE LOCAL CONNECTIONS AND DISCUSSION

In the previous section we have introduced a general method for constructing a network of genus g from the
correlation matrix. Here we constraint ourselves to the case g = 0, i.e. to the PMFG and we present three
examples of PMFG graphs obtained by means of such correlation based procedure. The first example concerns
a set of 16 Eurodollars Interest rates.4, 5 The second example concerns a set of 34 US interest rates6 and the
third concerns a set of 100 US stocks.2

3.1. PMFG for 16 Eurodollar interest rates

Let us here start with the analysis of the Eurodollar interest rates. For several economic reasons, interest rates
have very similar statistical behaviors and follow similar trends in time. This makes the subject very challenging
since one is no more dealing with the statistics of single objects but with the notion of a whole complex set of
interacting elements which collectively fluctuate.5, 6, 13–17 Here we apply our filtering procedure to daily values
in the time period 1990− 1996 for 16 Eurodollars interest rates with maturity date between 3 to 48 months.4, 5

These interest rates are very highly correlated with correlation coefficients values between 0.46 and 0.98 with
76% of the coefficients larger than 0.8. Fig. 1 reports a drawing of the PMFG network on the Euclidean plane.
The labels represent the maturity dates (in units of 3 months). In this figure, the thicker lines indicate links
belonging to both the MST associated with this set of data and the PMFG. We have therefore constructed
a graph which has a larger amount of links respect to the ones contained in the MST. This figure gives an
immediate graphical proof that the PMFG network is planar (g = 0): indeed it can be drawn on the plane
without edge-crossings. In this PMFG we count 38 cliques of 3 elements (triangles). 28 of such triangles lie
on the planar surface whereas the other 10 are ‘collar rings’. The total number of possible combinations of n
elements in groups of three (i.e. the total number of cliques of 3 elements in the complete graph) is

(
n
3

)
= 560.

This number is much larger than the number of 3-cliques in PMFG (38). Similarly, the number of cliques of 4
elements (tetrahedra) is 10, a number which is much smaller than the number of cliques of 4 elements present
in the fully connected graph

(
n
4

)
= 1820. Indeed, the planar embedding reduces the interconnectivity of the

network simplifying the resulting graph. In Table 1 all the cliques of 4 elements are reported. In this table are
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Figure 2. Planar representation of the embedding on S0 of the PMFG of the correlation structure for the 34 US Interest
rates. The labels represent different interest rates described in the Ref..6

Table 1. The entire set of 4-cliques in the Eurodollar interest rates. In bold are reported the labels corresponding to
maturity dates of 1, 2, 3 and 4 years (labels 4, 8, 12, and 16 respectively.)

Labels 〈ci,j〉 ∆ σ
12 14 15 16 0.977 0.017 0.006
9 10 11 13 0.972 0.016 0.006
8 9 10 11 0.969 0.021 0.008
7 8 9 11 0.965 0.021 0.007
6 7 8 9 0.964 0.026 0.009
5 6 7 9 0.959 0.029 0.012
4 5 6 7 0.958 0.044 0.016
3 4 5 7 0.94 0.06 0.02
2 3 4 5 0.91 0.13 0.05
1 2 3 4 0.83 0.30 0.11

also reported the average correlation coefficients 〈ci,j〉 inside each clique, the difference ∆ between the maximum
and minimum correlation coefficient and the standard deviation σ.

3.2. PMFG for 34 US interest rates

The second example regards the analysis of correlation coefficients among 34 different weekly interest rates
recorded during a time period of 16 years between 1982 and 1997 and stored in the Statistical Release database
of the Federal Reserve.6, 18 For such a data-set we construct both the MST and the PMFG reported in Fig. 2.
In this case we observe 94 cliques of 3 elements and 31 cliques of 4 elements. Note that, also in this case,
such numbers are much smaller than the number of all possible cliques of 3- and 4-elements in K34 which are
respectively

(
n
3

)
= 5984 and

(
n
4

)
= 46376. The complete list of 4 cliques together with 〈ci,j〉, ∆ and σ are listed

in Table 2.

3.3. PMFG for 100 US stocks

Let us now show the results of the application of the same method to a much more complex system with a larger
number of elements and a larger heterogeneity; a system of 100 stock traded in the New York equity market. We
consider pair correlation between daily returns of this set of 100 stocks traded in the time period between 1/1995



Table 2. All the4-cliques for the 34 US Interest rates.

Labels 〈ci,j〉 ∆ σ
22 28 21 20 0.967 0.045 0.016
21 28 20 19 0.97 0.06 0.02
20 21 19 18 0.97 0.05 0.02
9 12 5 4 0.962 0.032 0.013
18 27 17 16 0.96 0.07 0.03
19 20 18 17 0.96 0.06 0.02
26 27 16 15 0.96 0.07 0.03
10 13 9 5 0.957 0.040 0.018
12 13 9 5 0.955 0.040 0.017
30 31 13 5 0.951 0.044 0.017
19 27 18 17 0.95 0.09 0.03
13 30 12 5 0.949 0.044 0.016
25 26 15 14 0.93 0.10 0.05
13 16 10 5 0.93 0.11 0.05
26 27 16 10 0.93 0.11 0.04
17 27 16 13 0.93 0.13 0.05
16 27 13 10 0.93 0.11 0.05
11 12 9 4 0.93 0.10 0.05
7 12 5 4 0.92 0.10 0.04
11 29 4 3 0.92 0.07 0.03
28 32 22 21 0.92 0.11 0.06
6 11 4 3 0.92 0.09 0.03
25 26 16 15 0.92 0.17 0.06
12 29 11 4 0.91 0.10 0.04
7 8 5 4 0.90 0.10 0.04
24 31 13 5 0.87 0.21 0.10
32 33 28 21 0.87 0.17 0.06
21 28 19 2 0.84 0.26 0.13
23 24 13 5 0.80 0.30 0.12
33 34 32 21 0.76 0.23 0.10
4 6 3 1 0.7 0.5 0.2
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Figure 3. Planar Maximally Filtered Graph obtained from the fully connected graph associated with the correlation
coefficient matrix of 100 most capitalized stocks traded in the USA equity markets during the time period from 1995 to
1998.2 Cross correlation is computed by using daily returns of stocks. Stocks are indicated with their tick symbols.2 The
graph is topologically planar and it can be drawn on the plane without edge-crossings. The thicker lines are belonging
to the associated minimum spanning tree. It should be noted that link lengths are not drawn by taking into account the
value of the correlation between vertices.

and 12/1998.19 The planar projection of the PMFG for this system is shown in Fig. 3. As before, in the figure
the various elements are connected through links with thicker lines indicating links belonging to both the MST
and the PMFG. In the PMFG we counted 292 = 3n− 8 cliques of 3 elements out of the possible

(
n
3

)
= 161, 700.

The number of cliques of 4 elements is 97 = n − 3. This number is much smaller than the number of possible
cliques of 4 elements present in the fully connected graph which are

(
n
4

) ∼= 3.92 · 106.

The construction algorithm and the topological constraint of the PMFG force each element to participate to at
least a clique of 3 elements. The PMFG is a topological triangulation of the sphere. Therefore the triangular rings
(3-cliques) are the elementary building blocks of this network and all the possible PMFG networks associated to
the correlations between a set of n elements can be generated by exploring the ensemble of planar triangulations
with n nodes. In a triangulation of the topological sphere the number of triangles on the surface is 2n − 4.
However, in the two systems considered (Eurodollars and US interest rates) as well as in the 100 stock portfolio
the number of 3-cliques is systematically larger than the number of triangles on the surface indicating therefore
that there are several triangular rings which are collar rings and do not lie on the surface. By observing in details
Figs. 4 and 5, where a three-dimensional representation of the PMFG network with the distance between nodes
di,j =

√
2(1− ci,j) is shown, we note that these internal rings belong to tetrahedra which pack together some

3-clique by sharing a triangular ring which then becomes a collar ring. The basic structures in these graphs are
the 4-cliques, which during the formation of the PMFG clusterize together locally at similar correlation values
and then connect to each other by following the MST as skeleton structure. If such 4 elements cliques are the
‘emerging building blocks’ of the PMFG, then there must be strong relations between their properties and the
ones of the system from which they have been generated. One can verify that indeed the network for the 34
US interest rates is entirely made by a set of tetrahedra packed together by sharing a triangular face. Such
a packing leads to a structure made of 3n − 8 cliques of 3 elements and n − 3 cliques of 4 elements. This is
exactly what we find in the case of the 34 US interest rates. Interestingly, the planar network associated with
the 16 Eurodollar interest rates does not follow the above scheme having 38 cliques of 3 elements (instead of



Figure 4. Three dimensional representation of the embedding on S0 of the PMFG of the correlation structure for the 16
Eurodollar interest rates. Each edge-length corresponds to the metric distance di,j =

p
2(1− ci,j). The labels correspond

to the maturity dates expressed in units of 3 months.

Figure 5. Three dimensional representation of the embedding on S0 of the PMFG of the correlation structure for the 34
US Interest rates. Each edge-length corresponds to the metric distance di,j =

p
2(1− ci,j). The labels represent different

interest rates described in the Ref..6



Figure 6. Cluster structure in the PMFG for the 34 US interest rates. The structure can be seen as an aggregate of
4-cliques which reveal the hierarchical organization of the underlying system.

Table 3. Strongest correlated intra-sector 4-cliques. The labels are the economic sectors: Energy (E), Basic Materials
(B), Financial (F), Technology (T), Healthcare (H), Consumer non cyclical (C), Services (S) and Utilities (U).

Sec. Stock 1 Stock 2 Stock 3 Stock 4 Average Correlation
E ARC CHV MOB XON 0.628
B BCC CHA IP WY 0.592
F AXP BAC JPM MER 0.589
T CSCO INTC MSFT SUNW 0.537
H BAX BMY JNJ MRK 0.465
C AVP CL KO PG 0.462
S AIT BEL GTE T 0.422
U AEP ETR SO UCM 0.398

3n− 8 = 40) and 10 cliques of 4 elements (instead of n− 3 = 13). By analyzing the network in detail one can see
that such a discrepancy comes from the region where interest rates with large maturity dates of 30-48 months
gather together. However, it is clear from Fig. 4 that, apart from this region, the basic structure is also in this
case identifiable with a tetrahedral packing.

A further analysis of the clique structure for the case of the Eurodollar interest rates shows that these cliques
gather together interest rates forming clusters which are characterized by restricted ranges of maturity dates.
From Table 1, one can note that the most correlated cliques are the ones with largest maturity dates and the
spread of the correlation coefficients inside each clique increases as the correlation decreases.

A similar differentiation in term of maturity dates arises also from the analysis of the 34 US interest rates. In
ref.,6 it was shown that these data gather together in 6 main clusters and three isolated elements. By comparing
the structure of 4-cliques in Table 2 with this cluster gathering we observe that there are 13 cliques composed
by elements all belonging to the same cluster, 11 cliques with 3 elements belonging to the same cluster, 5 cliques
which mix two elements for one cluster and two from another and finally 2 cliques with elements belonging to
three different clusters. Fig.6 shows schematically such a differentiation into different clusters.

The case of the 100 stoks on the US equity market has been discussed in detail in Ref..2 Let us here briefly
recall the main results and observations. An analysis on all the 4-cliques in the PMFG reveals a high degree



of homogeneity with respect to the economic sectors (using the Forbes Magazine classification). The 8 cliques
with the largest average correlation for each economic sector with all 4-stocks belonging to the same sector are
reported in Table.3. We observe that 31 of the 97 cliques are composed by stocks belonging to the same economic
sector; 22 are composed by 3 stocks belonging to the same sector; 37 have 2 stocks from the same sector and
only 7 have stocks all from different sectors.

In conclusion we have recalled a method to characterize complex systems by means of hyperbolic graphs.
We have applied this method to the correlation coefficient matrix in different financial data by analyzing the
structure of a network obtained by linking the most correlated elements while constraining the genus of the
resulting graph. We have found that in the case g = 0 corresponding to the PMFG, the basic structure of such
network is formed by packing together cliques of 4 elements which share one or more triangular ring. The study of
such 4-cliques in the case of 16 Eurodollar interest rates and 34 interest rates reveals that the network hierarchy
spontaneously generates clusters grouping together interest rates with similar maturity dates. Therefore we have
shown how this method is efficient in filtering information about the clustering of the system and its hierarchical
structure both on the whole system and within each cluster. In particular in the case of 100 US stocks2 we
have shown that the loops and cliques have important and significant relations with the market structure and
properties.
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