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Abstract. We study how the aggregate statistical properties for density fluctuations in granular aggregates
scale with the sample size and how such a scaling is associated with the correlations between grains.
Correlations are studied both between grain positions and between Voronöı cell volumes, showing distinct
behaviors and properties. A non-linear scaling in the aggregate volume fluctuations as function of the
sample size is discovered and the connection between such anomalous scaling and correlations is explained.
It emerges that volume fluctuations might be described by means of a single universal equation for all
samples at all cluster sizes.

PACS. 45.70.-n Granular systems – 45.70.Cc Static sandpiles; Granular compaction – 81.05.Rm Porous
materials; Granular materials

The study of volume fluctuations in large granular ag-
gregates could be the way to validate some statisti-
cal mechanics theoretical descriptions of granular matter
[1–11], and therefore studies in this domain have recently
attracted a large interest from the scientific community
[12,9,13]. In a recent paper [13] we have shown that, at
local level, the fluctuations of the Voronöı cell volumes
can be predicted with a remarkable precision by using
a distribution function – with no adjustable parameters
– which reveals a universal dependence on the packing
fraction of the sample. On the other hand, in most ex-
periments the only measurable parameters are the global
volume fluctuations on the whole sample. The general-
ization to large aggregates of the local theoretical distri-
bution for the Voronöı cells depends on the presence of
correlations. More generally, to understand correlations
is essential in any statistical mechanics approach of any
given system because the correlation length establishes
the level of detail at which the system description must
be tuned. In this paper we study correlations and their
effects on the scaling laws of the volume fluctuations.

The structure of granular materials is disordered but
not random. These systems present a spontaneous or-
ganization which can be measured both at local and at
global level. Such an organization is the consequence of
several different mechanisms which are both physical (e.g.
mechanical stability) and geometrical (e.g. close packing
configurations). One of the key-questions, which we ad-
dress in this paper, is to identify the length scale at which
structural organization is present. In other words, we want
to identify the length-scale above which correlations are
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smearing out and average quantities become the relevant
control parameters.

In this paper we tackle this question by looking at
changes in the statistical properties as function of the size
of the packing-aggregates. Specifically, we compute two
different kinds of correlations: (1) correlations between
grain positions; (2) correlations between local Voronöı
cells constructed from the grain centers. In particular we
calculate the first kind of correlation by dividing the sam-
ple in cubic grids of different sizes and comparing the occu-
pation numbers in adjacent grid-units. The second kind of
correlation is computed in two different ways: (a) a direct
method is used for adjacent Voronöı cells; (b) an indirect
method is used at larger scales where the average corre-
lation between couples in clusters is computed from the
dependence of the aggregated distribution of the Voronöı
volumes on the cluster sizes.

Such analysis concerns six experimental samples made
of monosized acrylic beads prepared in a cylindrical con-
tainer and having packing fractions ranging between 0.58
to 0.64 [14–17]. Such a dataset was acquired by means of
X-ray Computed Tomography and it records the positions
of more than 385 000 sphere centers. The precision on the
coordinates is better than 0.1 % of the sphere-diameters
and the sphere polydispersity is within 2 %. In this pa-
per we refer to these samples with labels A, B, C, D, E
and F which are the same used to respectively identify
the samples in the previous papers [14–17] where other
kinds of structural analysis were performed. The present
investigations are performed over an internal region (G)
at 4 sphere-diameters away from the sample boundaries.
(Spheres outside G are considered when computing the
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Fig. 1. To calculate correlations, the internal part of each sam-
ple is subdivided into cubic grids with different sizes and the
occupation numbers of each grid unit n(x, y, z) are compared.

neighboring environment of spheres in G.) Samples A and
C contain about 140 000 beads each (90 000 in the inside).
Whereas, samples B, D-F contain about 35 000 beads each
(15 000 in the inside). Further details are reported in ref-
erences [14–17].

The paper is organized as follows. In Section 1, we cal-
culate the correlations between sphere centers by using
several grid partitions. In Section 2, we calculate the scal-
ing of the variance of the aggregated Voronöı volumes dis-
tribution and we derive the associated correlations among
Voronöı cells. In Section 3, we show how the aggregated
distribution of the Voronöı volumes is affected by correla-
tions among cells by solving explicitly the one-dimensional
case for Poisson points on a line. Section 4 gives conclud-
ing remarks and perspectives.

1 Correlations between beads positions from
a grid-partition

There are several possible ways to calculate geometrical
correlations between objects in space. In this section we
calculate such correlations by subdividing the space inside
each sample in a cubic grid and comparing the number of
sphere centers belonging to each unit. Figure 1 shows a
schematic example of such a grid in two dimensions. In
three dimensions, each unit is a cube with edge length a
and it is labeled by the symbols (x, y, z) with x = 1...Nx,
y = 1...Ny and z = 1...Nz. Samples B, D-F have been
subdivided into 30 different grids with unit sizes between
0.5 ≤ a/d ≤ 3.5 (where d is the bead diameter), resulting
in a total number of units between 34× 34× 34 ∼ 39 000
and 5× 5× 5 = 125. Whereas samples A and C have been
subdivided into 60 different grids with unit sizes between
0.5 ≤ a/d ≤ 6.5, with total number of units between 60×
60× 60 = 216 000 and 5× 5× 5 = 125. For each grid, the
correlations were evaluated by comparing the number of
sphere centers in neighboring couples of grid-units that are
sharing a face. Specifically, if we call n(x, y, z) the number

Fig. 2. Correlations between beads centers calculated with the
grid method as function of the relative grid size a/d.

of sphere centers inside the unit identified by the labels
(x, y, z), then the correlation in the x direction is defined
as:

Cx(a) =
〈n(x, y, z)n(x + 1, y, z)〉
〈n(x, y, z)〉 〈n(x + 1, y, z)〉 − 1, (1)

where the symbols 〈(...)〉 represent the following average:

〈g(x, y, z)〉 =
1

(Nx − 1)NyNz

Nx−1∑

x=1

Ny∑

y=1

Nz∑

z=1

g(x, y, z) ,

(2)
with g(x, y, z) any generic function of x, y, z. The cor-
relations in the other two directions y and z are de-
fined straightforwardly by analogy with equations (1) and
(2) and the total correlation can be defined as C(a) =
[Cx(a)+Cy(a)+Cy(a)]/3. Such quantity measures the co-
variance of the occupation number in adjacent grid-units
normalized by the average number of couples of grains in
the two units, making it therefore an average covariance
per couple of grains.

Figure 2 reports the values of C(a) measured in the six
experimental samples A-F. Not surprisingly, we find only
negative correlations. Indeed, in these systems there are
no attractive forces between beads and therefore there are
no mechanisms that spontaneously tend to gather beads
together. The large negative correlations below a/d = 1
are the effect of excluded volume: two spheres cannot stay
too close to each other. It is easy to calculate that the pres-
ence of a sphere in a given unit will completely exclude
the possibility to find another sphere in a neighboring unit
when a < 1/

√
6. The vertical line in Figure 2 indicates

such a threshold value below which C(a) must become
equal to −1. The small resurgence of negative correlations
above a/d = 1 (see inset in Fig. 2) might be due to me-
chanical equilibrium which induces some spheres to stay
in contact creating in this way a larger region of excluded
volume around a given sphere and its neighbors in con-
tact. It is interesting to note that the behavior of C(a) is
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very similar in all the samples and therefore it is little re-
lated to the packing fraction and sample preparation. The
detailed plot in the inset of Figure 2 shows that the main
differences are, eventually, in the region around a = 1
where the packings with lowest densities are slightly more
anti-correlated. A fit of C(a) with the exponential law
exp(−a/Λ) in the region a > d might indicate a charac-
teristic correlation length Λ ∼ 0.6d. However, the range of
sizes a is too small to produce a proper fit. Indeed, a power
law kind of decreasing trend cannot be excluded from this
set of data. For instance, we observed that the correlation
coefficient between the occupation numbers n(x, y, z) in
adjacent cells is oscillating around the value −0.5 for all
the sizes a measured. Such a constant correlation coeffi-
cient would imply that C(a) must decrease as a power law
with exponent −6. Larger samples must be investigated to
address properly this matter.

Furthermore, we must stress that, despite the fact
that C(a) is fast decreasing, other measures and other
effects of correlations remain sizable even at relatively
large distances. One of such effects can be observed from
the variance of the occupation numbers

〈
n(x, y, z)2

〉 −
〈n(x, y, z)〉2, which reveals a scaling as 〈n(x, y, z)〉γ with
exponent γ ∼ 0.71 which is smaller than the exponent
(γ∗ = 1) expected for the scaling of independent quanti-
ties. The covariance between occupation numbers in adja-
cent cells also reveals a non-linear scaling with exponent
∼ 0.73. All these experimental observations show that ge-
ometrical correlations in these systems produce important
sizable effects even at large scales.

In the next section we will see that similar effects are
also emerging from the study of the aggregated distribu-
tion of Voronöı volume fluctuations.

2 Scaling of the aggregate distributions
and correlations

We have recently discovered [13] that in three dimensional
packings of equi-sized beads the empirical distribution for
the Voronöı cells volumes is remarkably well described by
the following distribution

f(V, k)=
kk

(k−1)!
(V − Vmin)(k−1)

(〈V 〉 − Vmin)k
exp

(
−k

V − Vmin

〈V 〉 − Vmin

)
,

(3)
with Vmin the minimum attainable Voronöı volume in
a packing of spheres with equal diameters d (which is,

Vmin = 5(5/4)/
√

2(29 + 13
√

5)d3 � 0.694d3) and 〈V 〉 the
average Voronöı volume (that is 〈V 〉 = πd3/(6ρ), with
ρ the packing fraction). The theoretical framework that
yields to equation (3) assumes that each Voronöı cell is
made from the contribution of k ‘elementary cells’. The
analysis of a very large dataset containing more than 2
millions beads revealed a very good agreement between
f(V, k) and the empirical distributions for k � 12 [13],
indicating that about 12 elementary cells are contribut-
ing to building each Voronöı cell. The exact geometrical

Fig. 3. Plot of ∆(n) = σ2
v(n)/( π

6ρ
d3 − 0.694d3)2 as function of

the cluster size n. The variance of the aggregate distribution
of clusters of n Voronöı cells scales as σ2

v(n) ∝ nβ with β �
1.23. Empty symbols are associated to statistics on clusters
gathered with method (a), whereas full symbols correspond to
the gathering method (b) – see text. The data from all the
samples A-F collapse onto a common behavior when σ2

v(n) is
divided by the factor ( π

6ρ
d3 − 0.694d3)2.

nature of such elementary cells is not known, the only re-
quirement is that they must be space-filling and any given
combinations of such cells must yield to a mechanically-
stable packing. From a statistical mechanics perspective
one can see that such ‘elementary cells’ are the indepen-
dent degrees of freedoms which are contributing to the
aggregate volume.

There are two interesting features that arise from the
reasoning that leads to equation (3): (i) all the observable
statistical properties must collapse onto a universal behav-
ior, independent on the packing fraction, when plotted as
function of (V − Vmin)/(〈V 〉 − Vmin); (ii) equation (3) is
valid for any aggregate of k elementary cells and therefore
it must also describe how the statistical properties scale
with the size of the cluster investigated. In this respect,
these two properties lead to the following expression for
the variance of the aggregate distribution of n Voronöı
cells:

σ2
v(n) =

n2k(1)
k(n)

σ2
v(1) =

n2

k(n)

(
πd3

6ρ
− 0.694d3

)2

, (4)

with k(n) the number of elementary cells contributing to
the aggregate of n Voronöı cells.

Let us first verify whether this theoretical prediction
is backed by the empirical observations. In particular, we
already observed in [13] that – indeed – the distribu-
tion for the Voronöı cells volumes of a large set of dif-
ferent empirical samples (including the six samples A-F
discussed in this paper) collapses onto a single universal
curve (well described by f(V, k = 12)) when plotted vs.
(V − Vmin)/(〈V 〉 − Vmin). We now want to verify if such
a collapse holds also for the aggregated distributions of
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Fig. 4. (Left) Average correlation between Voronöı cells in a cluster of size n, calculated from equation (7). The empty and
full symbols are associated to the two different gatherings (a) and (b) — see text. The large empty symbols at n = 1 are the
correlation coefficients computed between couples of neighboring Voronöı cells. (Right) The behavior of k(n)/n vs. n shows that
the average number of elementary cells per Voronöı cell is decreasing with the cluster size n and it seems to settle at a value
around k(n)/n ∼ 3 for n → ∞. The large fluctuations are mostly due to the bad statistics at large n.

clusters of Voronöı cells. To this purpose we use the grid
partition introduced in the previous section and we collect
clusters of n Voronöı cells by using two distinct methods:
a) for all grid-sizes a we take all the units containing n
sphere centers; b) for each grid-size a we take all the units
containing a number of sphere centers equal to the small-
est integer which is larger or equal to the average unit
occupation number. For each one of these two methods
and for each sample A to F, we collect all the clusters
containing n Voronöı cells, we calculate the sum of the
Voronöı volumes in each cluster and we compute their
variance σ2

v(n).

In Figure 3, we show that, accordingly with equa-
tion (3), also the aggregated distributions and in particu-
lar their variances σv(n) collapse on a common behavior
when divided by the factor πd3/(6ρ) − 0.694d3. Contro-
versially, we observe that σ2

v(n) does not scale linearly
with the cluster size, showing instead a power law behav-
ior σ2

v(n) ∝ nβ with exponent β � 1.23. A similar scaling
was found by Lechenault et al. [18] for two dimensional
disk packings. However, this non-linear scaling is not nec-
essarily in contradiction with equation (3) which applies
to clusters of k elemetary cells; it simply tells that k(n)
has a non-linear dependence on n. Indeed, deviations from
the linear scaling can arise from correlations among cells
in the aggregate. Elementary cells are uncorrelated local
volumes but this does not exclude correlations between
aggregates of elementary cells, such as Voronöı cells, if
they are partially overlapping. This point will be clarified
in Section 3 by means of an example in one dimension.
Let us here, formally show such a link between the scaling
of σ2

v(n) and correlations by explicitly writing such vari-
ance: σ2

v(n) =
〈
(
∑n

i=1 vi)2
〉 − ∑n

i=1 〈vi〉2, which can be
expanded to

σ2
v(n) = nσv(1)2[1 + (n − 1)C(n)] (5)

where C(n) is the average correlation per cell in the cluster
of n Voronöı cells

C(n) =
1

n(n − 1)

∑

i,j �=i

〈vivj〉 − 〈vi〉 〈vj〉
〈v2〉 − 〈v〉2 . (6)

Therefore equation (6) shows that any deviation from the
linear scaling is directly associated to correlations. It fol-
lows that correlations can be directly calculated from such
deviations:

C(n) =
σ2

v(n) − nσ2
v(1)

n(n − 1)σ2
v(1)

=
1

n − 1

(
nk(1)
k(n)

− 1
)

. (7)

Let us therefore make use of this equation and calculate,
from the scaling law of σ2

v(n), the average correlations
between couples of Voronöı cells in a cluster.

Correlations from scaling

Figure 4 shows the behavior of C(n) calculated from the
statistics on the clusters made of n Voronöı cells gathered
with the two methods (a) and (b) described previously.
The data are plotted as function of n1/3 which gives an
information about the linear cluster size. We first note
that, despite the fact that the correlations among points
are negative (Fig. 2), here the Voronöı cells are positively
correlated indicating that – for instance – near to a large
Voronöı cell it is more likely to find another large Voronöı
cell than a small one. Second, we note that small clus-
ters (n ≤ 4) have correlations between 0.1 and 0.2. These
numbers are consistent with the correlation coefficients
between neighboring Voronöı cells calculated by using a
direct independent method. The large empty symbols at
n = 1 in Figure 4 report such correlation coefficients. We
also note that correlations decrease fast becoming negligi-
ble for distances above three sphere diameters. However,
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we must stress that the geometrical correlations for the po-
sitions C(a) had a much faster decay and we should also
note that despite such small values, these correlations lead
to sizable effects on σ2

v(n) for rather large n.
Equation (7) gives us another important insight to un-

derstand the non-linear scaling behavior of σ2
v(n). Indeed,

we observe that k(n)/n = nσ2
v(1)/σ2

v(n) indicating that
the non-linear scaling law of σ2

v(n) can be associated to the
scaling behavior of the average number of elementary cells
per Voronöı cell in the cluster. Indeed, the scaling of this
quantity is not trivial because it depends on the way that
elementary cells and Voronöı cells combine. Figure 4 shows
that for clusters containing more than 50 cells k(n)/n ap-
pears to settle down to a constant value. This might indi-
cate that the effects of correlations will smear out for sizes
above 2-3 sphere diameters (a cluster containing 50 cells
has linear size ∼ 3d). However, the sample-sizes do not
allow us to get a reliable statistics above n ∼ 30 making
very difficult to derive any definite conclusion.

It is important to stress that, even in the case in which
the elementary cells are assumed to be independent and
uncorrelated, the resulting Voronöı cells and their aggre-
gated clusters will be correlated if they are sharing ele-
mentary cells. In the next section we will clarify some of
these points by studying a one-dimensional example which
has the great advantage to be analytically solvable.

3 Correlations and aggregate Voronöı
distributions from random points in one
dimension

Let us consider a one-dimensional system where points are
placed at random on a line with average distance equal to
λ (Poissonian points). In this case, it is known that the
probability to find a gap of length l between two points
is pdel(l) = 1/λ exp(−l/λ) and, by construction, such in-
tervals are uncorrelated. In this case, these intervals are
the Delaunay cells and they are also the ‘elementary cells’
in one-dimension [13]. The Voronöı cell ‘i’ can be built by
taking the segments between the two mid-points between
three successive points i − 1 and i, and between i and
i + 1. The probability to find a Voronöı cell of size v can
be computed from the probability of finding two succes-
sive Delaunay segments respectively with lengths l1 and
l2 such that l1 + l2 = 2v, obtaining

pvor(v) =
∫ ∞

0

∫ ∞

0

pdel(l1)pdel(l2) δ(
l1 + l2

2
− v)dl1dl2

=
4v

λ2
e−2 v

λ , (8)

which coincides with equation (3) for k = 2.
Correlations among neighboring Voronöı cells can be

calculated from the combined probability to find one
Voronöı cell of size v1 next to a Voronöı cell of size v2,

which is

pcom(v1, v2) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

pdel(l1)pdel(l2)pdel(l3)

×δ(
l1 + l2

2
− v1)δ(

l2 + l3
2

− v2)dl1dl2dl3

=
4
λ2

e−2
v1+v2

λ (e−2
min (v1,v2)

λ − 1) . (9)

From the above expression one can calculate that the cor-
relation coefficient between neighboring Voronöı cells for
random points in one dimension is:

〈v1v2〉 − 〈v1〉 〈v2〉
〈v2〉 − 〈v〉2 =

1
2

. (10)

Interestingly, as we stressed before, it formally results that
the Voronöı cells are positively correlated even if their con-
struction starts from uncorrelated random points.

In this one-dimensional case we can also compute ex-
actly the form of the aggregate Voronöı distribution as
function of the cluster-size. In particular, we know already
that the aggregate of k Delaunay cells has the distribution
given by equation (3) (with Vmin = 0 and 〈V 〉 = kλ). We
can note that an aggregate of n Voronöı cells with size v
can be constructed by the combination of a central cluster
made of n − 1 Delaunay cells with total size x plus two
Delaunay cells of sizes l1 and l2 (at the right and left ends)
such that they sum to l1/2 + l2/2 + x = v. This implies
that the aggregate distribution of n Voronöı cells can be
written as

pvor(v, n) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

pdel(l1)f(x, n − 1)pdel(l2)

× δ(
l1 + l2

2
+ x − v)dl1dl2dx . (11)

This equation reveals that the probability distribution of
the aggregated Voronöı volumes is more complex than the
simple generalization of equation (3) that one could obtain
by substituting k with k(n). However, such substitution is
exact in the two limits n = 1 and n → ∞ and it turns out
to match quite well pvor(v, n) by using k(n) = 2n2/(2n−1)
which is the scaling law predicted by equation (4). Indeed,
from equation (11) one can calculate explicitly the vari-
ance of the aggregate distribution, obtaining

σ2
v(n) = λ2(n − 1

2
) , (12)

which coincides with σ2
v(n) = n2k(1)/k(n)σ2

v(1) when
k(n) = 2n2/(2n − 1). In this case the resulting scaling
law for σ2

v(n) is linear but the value of the variance is
almost twice the value expected for uncorrelated cells:
nσ2

v(1) = nλ2/2. We can note that this expression is con-
sistent with equations (5) and (6). Indeed, σ2

v(1) = λ2/2
and therefore from equation (7), C = 1/n which is the re-
sult one obtains by imposing a correlation coefficient equal
to 1/2 (Eq. (10)) between the n − 1 adjacent couples of
cells in the cluster. The scaling law for k(n) is instead not



240 The European Physical Journal E

linear (and it is similar to the one observed in Figure 4)
revealing that the effective number of degrees of freedom
per Voronöı cell is decreasing from 2 at n = 1 to 1 when
n → ∞.

4 Conclusions and perspectives

We have studied correlations in packings made with equi-
sized beads. We observed the presence of correlations
both between the beads-centers positions and between
the Voronöı volumes. It results that correlations between
the beads positions are negative and short-ranged but
we observed effects that rest persistent over relatively
large sizes. However, from the available experimental
data it was not possible to obtain a precise estimation
of the correlation length. In particular, we observed
that correlations become very small already at distances
above three sphere diameters. On the other hand, we
also observed that the law of decay could be a power
law, implying therefore infinite correlation length. Sim-
ilarly, we observed sizable effects on the scaling of the
aggregate Voronöı volume fluctuations with the cluster
size. In particular, we measured that the variance of the
aggregated Voronöı volumes in clusters of n cells scales as
σ2

v(n) ∝ n1.23. We have shown that such effect is the con-
sequence of a different kind of correlation that is present
among Voronöı cells. How these two kinds of correlations
are related is unclear and an example in one-dimension
reveals that Voronöı cells can be correlated even when
generated from random points. We have discussed that
the non-linear scaling law for the aggregated volume
fluctuations in clusters on n grains can be consistently
described with equation (3) by assuming that the number
of elementary cells in the cluster (k(n)) might not scale
linearly with n. From a statistical mechanics perspective,
the quantity k(n) must be interpreted as the number of
degrees of freedom contributing to the volume fluctu-
ations in the aggregate cluster. When a single Voronöı
cell is concerned the positions of all its neighbors are
contributing to its volume and in this case the value of the
parameter k(1) ∼ 12 is a sensible empirical finding. On
the other hand for large clusters the degrees of freedoms
cannot be larger than 3n. Indeed, only the grain positions
are determining the Voronöı volumes. An estimate of
k(n)/n as function of n reveals that the number of
degrees of freedom per grain decreases from k(1) ∼ 12
to some plateau value k(n)/n ∼ 3 when the cluster size
becomes larger than 50 grains. However, the present ex-
periments cannot give reliable statistics for clusters larger

than 30-50 grains and therefore it is difficult to estimate if
k(n)/n is settling down to a constant plateau. To answer
this point, the study of fluctuations in large aggregates
must be undertaken. This must be done by looking at the
global volume fluctuations of the whole sample in different
repeated trials.
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