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In this paper, we consider daily financial data from various sources (stock market indices,
foreign exchange rates and bonds) and analyze their multiscaling properties by estimat-
ing the parameters of a Markov-switching multifractal (MSM) model with Lognormal
volatility components. In order to see how well estimated models capture the temporal
dependency of the empirical data, we estimate and compare (generalized) Hurst expo-
nents for both empirical data and simulated MSM models. In general, the Lognormal
MSM models generate “apparent” long memory in good agreement with empirical scal-
ing provided that one uses sufficiently many volatility components. In comparison with
a Binomial MSM specification [11], results are almost identical. This suggests that a
parsimonious discrete specification is flexible enough and the gain from adopting the
continuous Lognormal distribution is very limited.
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1. Introduction

The development of the multifractal approach goes back to Benoit Mandelbrot’s
work on turbulent flows [17]. Its adaptation for financial data resulted in the
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multifractal model of asset returns (MMAR) [18], which provides a new time series
model with attractive stochastic properties accounting for the stylized facts of finan-
cial returns. However, the practical applicability of the MMAR suffers from its com-
binatorial nature and from its nonstationarity due to the restriction to a bounded
interval. In addition, it suffers from a lack of applicable statistical methods [14,18].
These limitations have been overcome by the introduction of iterative versions of
multifractal processes [4,15] which preserve the multifractal and stochastic proper-
ties of the earlier combinatorial models to a large extent but have more convenient
asymptotical properties.

In this paper, we expand on our previous work [11] and compare the tempo-
ral scaling properties of the empirical data to those of estimated Markov-switching
multifractal (MSM) models. Based on the empirical estimates obtained via the gen-
eralized method of moments (GMM), we conduct simulations of multifractal models
and compare the empirical data and simulated ones in terms of their autocorrelation
functions (ACFs). In addition, we compute Hurst exponents and perform explicit
tests for long memory (temporal scaling), using two refinements of the traditional
Hurst approach. One of these is the so-called generalized Hurst exponent, H(q),
for the gth order moment proposed in Refs. 7-9. The second is Lo’s modified R/S
approach [12], which allows one to adjust the rescaled range for possible short-
memory effects. We proceed by comparing the scaling exponents for empirical data
and simulated time series based on our estimated MSM models. The structure of the
paper is as follows. In Sec. 2 we introduce the multifractal models. Section 3 reports
the empirical and simulation-based results. A summary and concluding remarks are
given in Sec. 4.

2. Markov-Switching Multifractal Models

In the MSM model, financial asset returns are modeled as
Tt = 0¢ - Ut , (1)

with innovations u; drawn from the standard normal distribution N(0,1) and
instantaneous volatility being determined by the product of k volatility compo-
nents or multipliers Mt(l)7 ,5(2), RN Mt(k) and a constant scale factor o:

o? = o T m". (2)

Each volatility component is renewed at time ¢ with probability ~;, depending
on its rank within the hierarchy of multipliers, and it remains unchanged with
probability 1 — ;. The transition probabilities are specified by Calvet and Fisher
[4] as

7%21_(1_7k)(b1_k)7 221,7k, (3)
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with parameters vy, € [0,1] and b € (1, 00). Different specifications of Eq. (3) have
been imposed (see Ref. 15 and its earlier versions). By fixing b = 2 and ~, = 0.5,
we arrive at a relatively parsimonious specification:

1 (27;71@)
%:1—(5) . i=1,...,k. (4)

For the choice of volatility components, a popular version of the multifractal
(henceforth MF) process adopts the Binomial distribution: Mt(i) ~ {mgy,2 — mp},
with 1 < mg < 2. Another prominent variant [15, 18] is the continuous version
of the multifractal process that assumes the volatility components to be random
draws from a Lognormal distribution® (LN) with parameters A and o,,, i.e.

MY ~LN(=),02). (5)

In line with the combinatorial settings [3,18], a normalization of the expectation
of Mt(l), ie. & [Mt(l)] = 1, is imposed which leads to a restriction on the parameters
of the Lognormal distribution:

exp(—A+0.502%) =1 = 0, = V2. (6)

Note that the admissible parameter space for the location parameter A is [0, c0),
where in the borderline case A = 0 the volatility process collapses to a constant (the
same when mg = 1 in the Binomial case).

The above MF processes can be viewed as a special case of a Markov-switching
process which makes maximum likelihood (ML) estimation feasible if the distribu-
tion of volatility components is discrete. In the Binomial case, state spaces are finite,
so that maximum likelihood estimation is possible [4]. However, the applicability
of ML encounters an upper bound for the number of cascade levels (about k& < 10)
because of the necessity to evaluate the 2% x 2% transition matrix for every real-
ization. The limits of current computational capability are reached with about 10
cascade levels. A more fundamental limitation is the restriction to cases that have
discrete distributions of volatility components. Since MF processes with continu-
ous distributions (such as the Lognormal distribution) of the volatility components
imply an infinite number of states, ML is not applicable to them. Lux [15] proposed
the generalized method of moments (GMM) approach as an alternative, which
relaxes these computational restrictions and can be used in the case of the Binomial
MF model for larger numbers of cascade levels (k > 10), and the Lognormal MF
process. The exact algorithm and the analytical moment conditions for implement-
ing the GMM (both the Binomial and the continuous Lognormal model) can be
found in Ref. 15.

Using the iterative version of the MF model instead of its combinatorial pre-
decessor and confining attention to unit time intervals, the resulting dynamics of

o—(In(2)=2)2/(202)

aThe Lognormal distribution has the probability density function f(z, \,om) = P T
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Eq. (1) can also be viewed as a particular version of a stochastic volatility model.
The model also captures some of the most ubiquitous properties of financial time
series, namely outliers (extreme realizations), volatility clustering and the power
law behavior of the autocovariance function (see Refs. 6 and 16 for an overview of
the stylized facts and scaling laws of financial data):

(el = (el D) - (resrl® = (rer[2)) o 72407, (7)

where, for each gth moment and time lag 7, d(q) is the pertinent scaling function
depending on g. Although models of this class are partially motivated by empirical
findings on long-term dependence of volatility, they do not obey the traditional
definition of long memory, i.e. asymptotic power law behavior of autocovariance
functions in the limit ¢ — oo or divergence of the spectral density at zero [1].
The iterative MF model is rather characterized by only “apparent” long memory
with an asymptotic hyperbolic decline of the autocorrelation of absolute powers
over a finite horizon, and an exponential decline thereafter. In the case of the MSM
process, the approximately hyperbolic decline, therefore, holds only over the interval
1 < 7 < 2% (for the detailed proof, see Ref. 4). In view of this preasymptotic
temporal scaling, it seems interesting to explore how far the MF model is capable
of reproducing the empirical results on the scaling laws of returns and their higher
moments. This is the question we pursue in the present paper and its companion
[11]. As it turns out, taking empirical Hurst exponents as “stylized facts,” both the
estimated Binomial and Lognormal MF models are capable of reproducing empirical
statistics if enough volatility components are allowed for (i.e. for high k).

3. Comparison of Empirical and Simulated Series

In this paper, we consider daily data for a selection of stock exchange indices —
the Dow Jones Composite 65 Average Index (Dow) and the NIKKEI 225 Average
Index (Nik) over the period from January 1969 to October 2004; foreign exchange
rates — British pound to US dollar (UK), and Australian dollar to US dollar (AU),
over the period from March 1973 to February 2004; and US one-year and two-year
treasury bond rates with constant maturity (7'B1 and T B2, respectively) over the
period from June 1976 to October 2004. The daily prices are denoted as p;, and
returns are calculated as r; = In(p;) — In(p;_1).P

We estimate the Lognormal model parameters via the GMM. Table 1 presents
the empirical estimates of the Lognormal model for various hypothetical numbers
of cascade levels (k = 5,10, 15,20) using the same analytical moments as in Ref. 15
(the numbers within the parentheses are the standard errors). The pertinent esti-
mates for the Binomial case have been reported in Ref. 11. For each time series, we
find that the estimates for k£ > 10 are almost identical. In fact, analytical moment

bThe US one- and two-year treasury constant maturity rates have been converted to equivalent
bond prices before calculating returns.
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Table 1. GMM estimates of the MSM model for different values of k.

k=5 k=10 k=15 k=20

T A & h) & h) & A &

Dow 9372 0148 0983  0.139 098  0.139 0983  0.139  0.983
(0.018)  (0.052)  (0.018) (0.052) (0.018) (0.053) (0.018)  (0.052)

Nik 9372 0289  0.991 0279  0.990  0.280  0.991  0.280  0.990
(0.022)  (0.036)  (0.021)  (0.036)  (0.022) (0.036) (0.022)  (0.036)

UK 8493 0096 1053 0079  1.058 0078  1.058 0078  1.058
(0.018)  (0.027) (0.017) (0.026) (0.017)  (0.027) (0.017)  (0.027)

AU 8493 0140  1.012 0121  1.014 0120  1.015 0120  1.014
(0.024)  (0.065)  (0.023)  (0.065) (0.023)  (0.066) (0.023)  (0.065)
TB1 7110 0.314  1.022 0262 1055  0.260  1.056  0.260  1.056
(0.019)  (0.061)  (0.016)  (0.060) (0.016)  (0.060) (0.016)  (0.059)

TB2 7110  0.446  0.999  0.367  1.036 0364  1.037 0364  1.037
(0.019)  (0.051)  (0.016)  (0.049)  (0.016)  (0.049) (0.016)  (0.049)

Note: Estimation is based on the Lognormal model. T is the number of observations. All data
had been standardized before estimation.

conditions in Ref. 15 show that higher cascade levels make a smaller and smaller
contribution to the moments so that their numerical values would stay almost con-
stant. If one monitors the development of estimated parameters with increasing k,
one finds strong variations initially with a pronounced decrease of the estimates,
which becomes slower and slower until eventually a constant value is reached some-
where around k = 10 for each time series.

As a prelude to our Monte Carlo study comparing the empirical and simulated
scaling exponents, we plot the autocorrelation functions (ACFs) of absolute returns
for empirical and simulated time series with different numbers of multipliers k
(Fig. 1). We find that the simulated time series with & = 5 exhibits much faster
decay than the empirical data. In contrast, the ones with larger values of k show
the ability of the MSM model to replicate the apparently hyperbolic decay of the
empirical ACF, namely the hyperbolic decay of the ACF. Recalling Eq. (7), we
recognize that the approximately hyperbolic decline holds in the interval 1 < 7 <«
2% and therefore a MF process with a higher number of cascade levels implies
a longer power law range of the autocorrelations, which means a larger region
of apparent long-term dependence. We have also studied the ACFs based on the
Binomial model, and they show pretty similar patterns [11]. Studies of other time
series have also been pursued. We omit them here, as they are qualitatively similar
to that of the Dow Jones index.

Since findings on temporal scaling have sometimes been disputed in the liter-
ature and various sources for apparent, spurious scaling have been identified (see
Ref. 16 for an overview), it might be a worthwhile exercise to assess empirical scal-
ing on the base of different algorithms. It also is the best practice in statistics and
econometrics to use a battery of tests rather than relying on only one particular
algorithm. We, therefore, compute H(q) by the generalized Hurst exponent (GHE)



674 R. Liu, T. Di Matteo and T. Lux

0.45
0,45

0.35
0.35

-empirical ACF ——— empiricol ACF
6—— simuloted ACF (k=10)
— — zero line

64— simuloted ACF (k=5)

0.25

— — zerc line

ACF
ACF
0.25

0.15
0,15

0.05
0,05

-0.05
-0.05

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Time log T Time log T
o o
o S
0 'y
! "
o o

empirical ACF Y ———  empiricol ACF
©—— simuloted ACF (k=15) o—— simuloted ACF (k=20)
— — zero line — — zero line

0.25
0.25

ACF
ACF

0.15
0,15

0.05
0,05

-0.05
-0.05

0 50 100 150 200 250 300 350 400 450 500

[ 50 100 150 200 250 300 350 400 450 500
Time lag T Time log 7

Fig. 1. Autocorrelation function (ACF) for the Dow Jones index and simulated time series (abso-
lute returns). All simulations are based on the Lognormal model with different k values.

approach [7-9] and by the modified R/S method [12] for the same data sets, and
we proceed by comparing the scaling exponents obtained for empirical data and
simulated time series based on the estimated Lognormal MSM models.

We start with the GHE, which extends the traditional scaling exponent method-
ology. According to previous research, this approach provides a natural, unbiased,
statistically and computationally efficient estimator able to capture very well the
scaling features of financial fluctuations [7,8]. It is essentially a tool for studying
directly the scaling properties of the data via the gth order moments of the distri-
bution of the increments. The gth order moments appear to be less sensitive to the
outliers than maxima/minima, and different exponents ¢ are associated with differ-
ent characterizations of the multiscaling behavior of the signal X (¢). We consider

the g-order moment of the distribution of the increments (with ¢ = v,2v,...,T)
of a time series X (t): K4(7) = W, where the time interval 7 varies

between v = 1 day and Tnax days. The GHE H(q) is then defined from the scaling
behavior of K,(7), which can be assumed to follow the relation K (1) ~ (%)qH(q).
Within this framework, for ¢ = 1, H(1) describes the scaling behavior of the abso-
lute values of the increments. When ¢ = 2, H(2) is associated with the scaling of
the ACF.
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Table 2. H(1) and H(2) for the empirical and simulated data.

H(1) H(2)
Emp k=5 k=10 k=15 k=20 Emp k=5 k=10 k=15 k=20

Dow 0.684 0748 0.847 0.867 0.866 0.709 0.710 0.797 0.812  0.810
(0.034) (0.010) (0.017) (0.023) (0.025) (0.027) (0.011) (0.017) (0.020) (0.021)

NIK 0.788 0.804 0.895 0.909 0901 0.753 0.739 0.811 0818 0.813
(0.023) (0.010) (0.015) (0.019) (0.030) (0.021) (0.014) (0.019) (0.021) (0.025)
UK 0749  0.707 0.797 0.820 0.821 0.735 0.681 0.765 0.783  0.784
(0.023) (0.010) (0.019) (0.027) (0.027) (0.026) (0.011) (0.019) (0.024) (0.024)
AU 0827 0.742 0.836 0.857 0.857 0.722 0.706 0.790 0.806  0.807
(0.017) (0.010) (0.019) (0.024) (0.025) (0.024) (0.012) (0.019) (0.021) (0.022)
TBI 0.842 0.773 0.876 0.896 0.898 0.807 0.696 0.785 0.799 0.800
(0.023) (0.011) (0.017) (0.022) (0.022) (0.027) (0.016) (0.022) (0.024) (0.023)

TB2 0.771 0.800 0.895 0.913 0913 0761 0.697 0.778 0.788 0.791
(0.025) (0.011) (0.016) (0.020) (0.020) (0.029) (0.018) (0.026) (0.027) (0.027)

Note: Emp refers to the empirical estimates of H(1) and H(2). k =5, k =10, k = 15 and k = 20
refer to the mean and standard deviation of the exponent values based on 1000 simulated time
series with pertinent k (Lognormal model). Bold numbers show those cases for which we cannot
reject the identity of the Hurst coefficients obtained for empirical and simulated data, i.e. the
empirical exponents fall into the range between the 2.5 and 97.5 percent quantile of the simulated
data.

For the results reported in Table 2, we focus on H(q) for ¢ = 1 and ¢ = 2. We
present the pertinent estimates for both the empirical time series and the mean
and standard deviation of 1000 simulated time series for each set of estimated
parameters. The values for H(1) and H(2) are averages computed from a set of
log regressions of K,(7) against 7 for different 7.y (between 5 and 19 days). The
underlying stochastic variable X (¢) in Refs. 7-9 is defined as the sum of absolute
values of returns, X (¢t) = Zi/zl |r4|. The second and seventh columns of Table 2
report the empirical H(1) and H(2), and values in the other columns are the mean
values over the corresponding 1000 simulations for different k values: 5,10, 15, 20,
with errors given by their standard deviations. Boldface numbers show those cases
which fail to reject the null hypothesis that the mean of the GHEs from the sim-
ulations equals the empirical GHE at the 5% level based on the distribution of
our 1000 Monte Carlo samples. We find that the exponents from the simulated
time series vary across different cascade levels k. In particular, for the stock market
indices, we find coincidence between the empirical series and simulation results for
the scaling exponents H (1) and H(2) for the Nikkei index, and H(2) for the Dow
Jones index only for k = 5. For the exchange rate data, only H(2) for UK fails to
reject the null hypothesis when k = 10, whereas the estimated coefficients H (1) and
H (2) are significantly different from the simulated ones in all other cases. We also
observe that the simulations successfully replicate the empirical measurements of
AU for H(1) when k = 10,15,20. In the case of the US bond rates TBl and TB2,
we find good agreement for H(2) when k = 10, 15,20. While the empirical numbers
are in nice agreement with previous results in Refs. 7-9, it is interesting to note
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that simulated data with & > 10 have a tendency towards even higher estimated
Hurst coefficients than found in the pertinent empirical records. Similar studies for
the Binomial model show almost identical numerical results for simulated data for
all time series and at all k. This underscores the impression from previous stud-
ies [11,15] that the empirical performance of both types of MF models is virtually
identical.
An alternative approach to estimation of H is the well-known rescaled range
algorithm, dating back to Hurst (1951). It uses the range of a time series x;:
T T
Rr = R (x¢ — ) — i t,l(xt -I), (8)

with Z the estimate of the mean. If R is rescaled by the sample standard derivation,
it obeys temporal scaling with the same exponent H as the original time series. In
the traditional R/S algorithm, H is also extracted via a log regression of R/S ver-
sus t according to the asymptotic scaling relationship (R/S); ~ at®. Note that H
provides an alternative estimator to the above GHE at g = 1 for the scaling of the
range and related quantities. The spectrum of results obtained for H in Table 5
shows how much this estimate can be affected by different levels of hypothesized
short-term dependence. Note also that H(1) = H(2) = H would hold for unifractal
time series, but only H(1) = H and H (1) # H(2) would apply for multifractal pro-
cesses. Unfortunately, the original R/S statistic is biased in the presence of short-
run autocorrelation. Lo developed a modified R/S statistic that is more immune to
the presence of short-run dependence and allows an explicit test of the hypothesis
of long-run dependence (H # 0.5) conditional on the maximum extent of short-
run autocorrelation allowed for [12]. Lo’s adjustment for short-run autocorrelations
uses the Newey—West heteroskedasticity and autocorrelation consistent estimates
instead of the sample standard derivation. Since the statistic Q; = T=%%- Ry /S, (S,
is the Newey—West estimator with [ lags considered to cover short-run dependence)
converges to the range of a Brownian bridge, the null hypothesis of absence of long
memory can be tested explicitly. The original estimator of Hurst is obtained by
setting [ = 0.

To shed further light on the ability of the MF model to replicate empirical scaling
behavior, we also performed calculations using this modified rescaled range analysis,
whose results are reported in Tables 3-5. Table 3 presents Lo’s test statistics for
both empirical data and 1000 simulated time series (absolute returns) based on
the Lognormal model with different values of k and for different truncation lags,
1 =0,5,10,25,50,100. We find that the values are varying with different truncation
lags and, more specifically, that they are monotonically decreasing for both the
empirical and simulation-based statistics. Table 4 reports the number of rejections
of the null hypothesis of short-range dependence based on 95% and 99% confidence
levels. The rejection numbers for each single k are decreasing as the truncation
lag [ increases, but the proportion of rejections remains relatively high for higher
cascade levels, k = 10,15,20. The modified R/S approach would quite reliably
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reject the null hypothesis of long memory for & = 5, but in most cases it would
be unable to do so for higher numbers of volatility components, even if we allow
for large truncation lags up to [ = 100. This appears to be in harmony with the
impression conveyed by Fig. 1. The corresponding Hurst exponents are given in
Table 5. The empirical values of H are decreasing when [ increases, and a similar
behavior is observed for the simulation-based H for given values of k. The decrease
of H with higher [ is well known from other studies [2,5,13]. It is explained by
removal of short-run dependence with higher lag lengths [ that would otherwise be
attributed to the long-memory estimate H. In the limit with | — oo, H should
converge to 0.5. Of course, [ might be misspecified and, if chosen too high, might
bias the estimate of H downward. In empirical research, various automatic lag
selection schemes can be used for optimal data-driven selection of [. Here we are
interested in the whole pattern of results and the comparison of empirical and
simulated data from this perspective. We also find that the Hurst exponent values
are increasing with increasing cascade level k for given [. Boldface numbers show
those cases which fail to reject the null hypothesis that the mean of the simulation-
based Hurst exponent equals the empirical Hurst exponent at the 5% level, and
we observe similar scenarios for the pertinent results based on the Binomial model
reported in Ref. 11. There are significant jumps between the values of k = 5 and
k = 10 as in previous tables, and we observe good overall agreement between the
empirical and simulated data for practically all series for k£ > 10, but not so for the
MSM models with a smaller number of volatility components, e.g. kK = 5.

It is also interesting to note that even for the original Hurst estimate obtained in
the absence of short-run effects (I = 0), the numbers differ quite strongly between
the two methods we have used to assess temporal scaling. Also in terms of replica-
bility of empirical results, we find quite pronounced differences. In particular, we
are never able to reject the identity of the empirical and simulated Hurst exponents
under Lo’s modified R/S approach if we allow for a sufficiently large number of MF
components. In contrast, results for the generalized H(q) algorithm are much more
mixed. However, noting the monotonic increase of simulated Hurst coefficients in
Table 2 with increasing k, we might actually be able to find fitting intermediate
numbers of multipliers for which coincidence of empirical and simulated scaling
could be obtained. This might allow us to be somewhat more sanguine about these
results. We, therefore, feel that we can safely conclude that the MF model is able
to replicate empirical measurements of temporal scaling (be it true or apparent)
relatively closely. Whether the different behavior of both algorithms arises from
the lack of the H(gq) method to account for short-term dependence, or from its
higher sensitivity to only apparent scaling, would be an interesting topic to pursue
in future research.

4. Summary and Concluding Remarks

In this paper, we have investigated the scaling behavior of estimated Markov-
switching multifractal models with Lognormal volatility components. Based on
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the empirical estimates via the GMM, we have studied simulated time series and
compared their autocorrelation functions with the ones from empirical data. In
addition to these qualitative comparisons, we have calculated the empirical and
simulated scaling exponents by using the generalized Hurst exponent and the mod-
ified R/S approaches. Comparing the results from the Lognormal model to our
previous study on the Binomial model [11], we observe that there is not much dif-
ference between these discrete and continuous versions of multifractal processes.
This finding is also in line with the very similar goodness-of-fit and forecasting
performance of MSM models reported in Ref. 15. Our results also demonstrate
that typically MSM models with a relatively large number of volatility components
(k > 10) are required to capture the long-term dependence of absolute values of
returns. Since we know that the iterative Markov-switching MF models have only
preasymptotic (i.e. apparent or spurious, strictly speaking) scaling, these results
also show that we can replicate the stylized facts without “true” asymptotic scal-
ing. Since the preasymptotic region can be arbitrarily large, this difference between
true and apparent asymptotics may be of little practical concern.
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